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1. INTRODUCTION AND HISTORY. The Gaussian integers are defined to be the
set Z[i] = {a + bi : a, b ∈ Z, i = √−1}. These sit inside the complex numbers C and
thus obey the usual rules of addition and multiplication; indeed, despite the presence
of the imaginary i , they are quite similar to the “traditional” integers. In fact, in the set
Z[i] one can define (Gaussian integer) primes, construct analogues of the Euclidean
division algorithm and the Euler φ-function, discuss Pythagorean triples, generalize
the twin-prime problem, and much more. In this paper, we will generalize the idea of
factor rings from the integers to the Gaussian integers and discuss what new objects
can be found in this manner. (Recall that integer factor rings are the familiar objects
Z/〈n〉, where 〈n〉 signifies the ideal in Z generated by n. These rings are also written
as Z/nZ or Zn .)

If the Gaussian integers were no more than a practice area for generalizing con-
cepts from the standard integers, they would still be of great interest to students and
researchers alike. Yet these numbers have been (and still are) far more than just a con-
venient teaching tool. They have played roles in the development of two of the great
theorems of mathematics of the last two centuries (the reciprocity theorems and Fer-
mat’s Last Theorem) and have helped inspire the creation of algebraic number theory.
Taking a minute to provide a brief review of this fascinating history will be time well
spent. (Much of what follows can be found in [9]; see also [7].)

Our story begins over two hundred years ago, long before either abstract algebra or
modern number theory came into existence. In the late 1700s, Leonhard Euler noticed
some intriguing patterns that arose in his study of the equation x2 ≡ p (mod q). Euler
called p a quadratic residue or nonresidue modulo q depending on the existence of a
solution to this equation, and he surmised that, for odd primes p and q with p ≡ 1
(mod 4), p is a quadratic residue modulo q if and only if q is a quadratic residue
modulo p. This remarkable conjecture on quadratic reciprocity (and others like it)
established a test for the solvability of x2 ≡ p (mod q) by looking at the reciprocal
equation x2 ≡ q (mod p). Moreover, if q > p this new equation could be simplified
and the process repeated. Euler was able to prove some nice partial results (for ex-
ample, that −1 is a quadratic residue modulo an odd prime p if and only if p ≡ 1
(mod 4)) and Adrien-Marie Legendre attempted a proof a few years later. The first ap-
pearance, however, of a full and complete proof of the quadratic reciprocity theorem
was in Carl Friedrich Gauss’s seminal work of 1801, the Disquisitiones Arithmeticae.

It was only natural that after settling the matter of quadratic reciprocity Gauss
should then turn to higher reciprocity theorems, and he spent many years trying to es-
tablish relationships between, say, x4 ≡ p (mod q) and x4 ≡ q (mod p). This proved
to be exceptionally difficult, and Gauss realized that he needed to look beyond the tra-
ditional integers. Here is how in Gauss’s 1832 paper [5, p. 102] a new set of numbers
makes its first appearance in print:

[N]umeri formae a + bi , denotantibus i, pro more quantitatem imaginariam
√ − 1, atque a, b

indefinite omnes numeros reales integros inter −∞ et +∞. Tales numeros vocabimus numeros
integros complexos. . . .
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Gauss called them numeros integros complexos (complex integer numbers), but of
course we now know them as Gaussian integers. He proceeded to develop an entire
arithmetic in Z[i]; first, by defining primes and illustrating which Gaussian integers
are prime, and then by proving the existence of unique factorization into these primes.
(This can now be recognized as the beginning of algebraic number theory, which seeks
to do for Z[ξ ] = {a + bξ + cξ 2 + · · ·} what Gauss did for Z[i] = {a + bi}.) Gauss was
then able to state a general theorem for quartic (also called biquadratic) reciprocity
in the language of Gaussian integers. Still, as with Euler before him, even the great
Gauss was unable to prove the reciprocity theorems he had so painstakingly developed.
This was finally achieved by the young mathematician Ferdinand G. Eisenstein, who
produced five different proofs in the 1840s.

A general theorem for higher (quintic, etc.) reciprocity proved to be even more
difficult, but more on that in a moment. Since we find ourselves in the 1840s, let
us turn our attention to the 1847 meeting of the Paris Academy of Science, where
for a few moments Fermat’s Last Theorem seemed to have been solved. (Edwards’s
book [3] gives a full and lengthy description of that exciting time; what follows here
is a condensed version of his account.)

The famous conjecture of Fermat (from about 1636) concerns integer solutions to
the equation xn + yn = zn for n ≥ 3. It was not until 1994 that Andrew Wiles proved
that no solutions except the obvious trivial ones exist. Prior to the 1847 Paris meet-
ing only a few partial results had been found, so it was quite a shock when Gabriel
Lamé announced that he had a complete proof. A key part of his method involved
the factoring of x p + y p as (x + y)(x + ξ y)(x + ξ 2 y) · · · (x + ξ p−1 y), where ξ is a
complex number (called a primitive pth root of unity) such that ξ p = 1 but ξ q 	= 1
when 0 < q < p. Lamé had made the assumption that arithmetic in this extended set
of numbers would be the same as in Z or in Z[i], and, in particular, that one would
have unique factorization into prime elements. Joseph Liouville spoke next, however,
and said that this assumption of Lamé might not be true. Much work was carried out
by Lamé and others over the ensuing days in an attempt to bridge this gap, until it was
eventually discovered that Ernst Kummer had already proved that unique factorization
fails in some of these extended sets of numbers (for instance, when ξ is a primitive
23rd root of unity). Kummer was working on his proof of the aforementioned higher
reciprocity laws when he made this disappointing discovery, and this led him to de-
fine ideal numbers. This led directly to Richard Dedekind’s development of algebraic
number theory in the 1870s and the restoration of a form of unique factorization using
ideals instead of numbers.

We see that the Gaussian integers are quite deceptive in their similarity to the tra-
ditional integers. They both have primes, as well as unique factorization into primes;
both are principal ideal domains; and they both even have norms and division algo-
rithms, making them Euclidean domains (see [16]). It is thus not surprising that Lamé
and others thought (incorrectly!) that their numbers of the form a0 + a1ξ + a2ξ

2 + · · ·
would always behave in a similar manner.

2. MOTIVATIONAL REMARKS. There are, of course, fundamental differences
even between Z and Z[i], and one place where these differences can be observed is
in the types of factor rings that can be produced. As mentioned earlier, factor rings
in the standard integers are the familiar objects Zn , and these are isomorphic to the
rings {0, 1, . . . , n − 1} modulo n. These rings are easily understood; not only is the
underlying group cyclic, but one can also show that if n factors as pe1

1 · · · pek
k , then Zn

“factors” as Zp
e1
1

⊕ · · · ⊕ Zp
ek
k

. This is a consequence of the Chinese Remainder The-

orem, which asserts the existence of a unique solution modulo pe1
1 · · · pek

k to systems
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of congruences such as x ≡ a1 (mod pe1
1 ), . . . , x ≡ ak (mod pek

k ). Using this theorem,
we can create a well-defined isomorphism between Zn and the direct sum of the re-
spective Zp

ei
i

.
In the Gaussian integers Z[i] factor rings can be much more complicated, and many

interesting questions arise. These two exercises are taken from a popular modern alge-
bra text [4]:

Show that the characteristic of Z[i]/〈a + bi〉 divides a2 + b2. (Exercise 38, page 269)
Show that Z[i]/〈2 + i〉 is a field. How many elements does it have? (Exercise 11, page 331)

Further reading turned up many similar exercises dealing with factor rings over the
Gaussian integers, and further investigation by us and by our students (Matt Kozora
and Michael Riley) revealed that there was a general theory behind all these problems,
a theory that could easily handle these exercises in just one or two steps. Indeed, what
we show in this article is that many of these questions about factor rings can be an-
swered by simply understanding how a general factor ring like Z[i]/〈a + bi〉 “factors”
into direct products of smaller, simpler rings, usually of the form Zn or Zn[i]. Our
purpose is to present this general theory, along with its ramifications and applications,
in a manner that is accessible to capable algebra students and in a form that could be
used either as an extended homework problem or in a classroom presentation. Indeed,
much of this work can be generalized to other rings containing Z, which might make
a good honors thesis or senior project (see the conclusion for further comments).

We remark that the problem of factoring the (multiplicative) group of units of
Z[i]/〈a + bi〉 has been completely solved in [2]. For an extension of this topic be-
yond the Gaussian integers (with references to other papers), see [15]. For a study of
the group of units in Z/〈n〉, see [8, chap. 4].

3. SOME TECHNICAL BACKGROUND. We begin by establishing some basic
facts about elements and ideals in the Gaussian integers. First, since the units of Z[i]
are 1, −1, i , and −i , we know that for integers a and b the ideals 〈a + bi〉, 〈−a − bi〉,
〈−b + ai〉, and 〈b − ai〉 in Z[i] are one and the same. Thus, we can state:

Fact 1. Z[i]/〈a + bi〉 ∼= Z[i]/〈−a − bi〉 ∼= Z[i]/〈−b + ai〉 ∼= Z[i]/〈b − ai〉.
Also, by basic ring theory, we have:

Fact 2. Z[i]/〈0〉 ∼= Z[i] and Z[i]/〈1〉 ∼= {0}.
Our first nontrivial statement about factor rings is the following:

Theorem 1. If a is a positive integer larger than 1, then

Z[i]/〈
a
〉 ∼= Za[i].

Proof. Define φ : Z[i] → Za[i] by φ(x + yi) = [x]a + [y]ai , where [·]a represents
the equivalence class modulo a. This mapping is clearly a surjective ring homomor-
phism. Since φ(a) = [a]a = [0]a = 0, a belongs to ker(φ) and hence 〈a〉 ⊆ ker(φ).
On the other hand, if φ(x + yi) = 0, then both x and y are congruent to 0 mod-
ulo a, so we can write x = ax ′ and y = ay′ for some integers x ′ and y′. Thus
x + yi = ax ′ + ay′i = a(x ′ + y′i) lies in 〈a〉. Therefore ker(φ) = 〈a〉, implying
that Z[i]/〈a〉 ∼= Za[i].
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Sometimes, Za[i] is actually a field, as pointed out by the next basic fact:

Fact 3. If a is a positive integer larger than 1, then Za[i] is a field if and only if a is a
prime (in Z) that is congruent to 3 modulo 4.

Proof. Suppose first that Za[i] is a field. Clearly a must be prime. Moreover, a can-
not be 2, for if it were, then (1 + i)2 ≡ 0 (mod a), a contradiction. So, let a be an
odd prime, and consider the usual ring homomorphism φ : Za[x] → Za[i] given by
φ(x) = i . Since a is an odd prime, ker(φ) = 〈x2 + 1〉. By the standard isomorphism
theorem, Za[i] ∼= Za[x]/〈x2 + 1〉, and this is a field if and only if x2 + 1 is irreducible
modulo a. This is equivalent to stating that there are no solutions to x2 ≡ −1 (mod a),
and we recognize this as a question about quadratic reciprocity! As discussed in the
introduction, Euler proved that this equation has solutions (for a an odd prime) if and
only if a ≡ 1 (mod 4). Thus, we can conclude that a ≡ 3 (mod 4). Next, suppose that
a is a prime congruent to 3 modulo 4, and consider again the ring homomorphism φ.
Since x2 + 1 is irreducible, the kernel 〈x2 + 1〉 is a maximal ideal, and thus Za[i] is a
field.

Since Z[i] is a Euclidean domain, we have the following corollary to Fact 3 and
Theorem 1 about primes in Z[i] (a prime in Z[i], as first defined by Gauss, is exactly
what one would expect—an element σ such that if σ = xy then either x or y is a unit
in Z[i], namely, one of the numbers ±1 or ±i):

Corollary 1. If a is a positive integer larger than 1, then a is prime in Z[i] if and only
if a is a prime (in Z) that is congruent to 3 modulo 4.

We record several other bits of information about Gaussian integers that we meet
later; some of these are interesting in their own right. The first is nothing more than
the “division formula” in the complex numbers: for a, b, c, and d integers,

c + di

a + bi
= ac + bd

a2 + b2
+ i

(
ad − bc

a2 + b2

)
. (1)

Next, we have an immediate consequence of equation (1):

Fact 4. If a and b are relatively prime integers, then c + di belongs to the ideal
〈ak + bki〉 if and only if k(a2 + b2) divides both ac + bd and ad − bc.

We now proceed to an interesting isomorphism between rings. This is also an im-
portant step in developing our main theorem.

Theorem 2. If a and b are relatively prime integers, then Z[i]/〈a + bi〉 is isomorphic
to Za2+b2 .

Observe the difference between Theorems 1 and 2. (Note also that Theorem 2 lets
us solve the second exercise quoted earlier.) Theorem 2 admits the following corollary:

Corollary 2. If a and b are relatively prime integers, then a + bi is a prime in Z[i] if
and only if a2 + b2 is prime in Z. (Note that in this case, (a2 + b2) 	≡ 3 (mod 4).)

Proof of Theorem 2. Thanks to Fact 1, we can assume without loss of generality that
a and b are both positive. Observe that b is relatively prime to a2 + b2, so b−1 exists in
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Za2+b2 . (We are being a bit sloppy with our notation; technically, we should be writing

b−1 as
([b]a2+b2

)−1
to indicate that we are talking about the inverse of the equivalence

class of b modulo a2 + b2. It should be clear from the context, however, when we
are talking about integers and when we are talking about equivalence classes mod-
ulo a2 + b2.) Since a2 + b2 ≡ 0 (mod a2 + b2), a2 ≡ −b2 (mod a2 + b2), implying
that (ab−1)2 ≡ −1. Define φ : Z[i] → Za2+b2 by φ(x + yi) = x − (ab−1)y modulo
a2 + b2. Clearly φ is surjective and preserves addition.

Let α = x + yi and β = w + zi be in Z[i]. Since

φ(α) · φ(β) = φ(x + yi) · φ(w + zi) = (
x − ab−1 y

) · (
w − ab−1z

)
≡ (xw) + a2b−2(yz) − ab−1(xz + yw)

≡ (xw − yz) − ab−1(xz + yw)

= φ ((xw − yz) + (xz + yw)i)

= φ ((x + yi) · (w + zi))

= φ (α · β) ,

φ preserves multiplication. Moreover, because φ(a + bi) = a − ab−1b ≡ 0,
〈a + bi〉 ⊆ ker(φ).

Let c + di belong to ker(φ), and let c + di = (a + bi)(x + yi), where x and y
are rational numbers. Since 0 ≡ φ(c + di) = c − ab−1d, 0 ≡ bc − ad , which by (1)
makes y an integer. Multiplying the last equation by ab yields 0 ≡ ab2c − a2bd, which
implies that 0 ≡ ac − a2b−2bd. From (ab−1)2 ≡ −1, we have 0 ≡ ac + bd, so x is
also an integer. We conclude ker(φ) ⊆ 〈a + bi〉, which means that ker(φ) = 〈a + bi〉
and thus demonstrates that Z[i]/〈a + bi〉 is isomorphic to Za2+b2 .

We can now identify all primes in the Gaussian integers:

Theorem 3. Up to multiplication by units, the primes σ in Z[i] are of three types:

(1) σ = a + bi and σ ′ = b + ai , where p = a2 + b2 is a prime in Z and p ≡ 1
(mod 4);

(2) σ = p, where p is a prime in Z and p ≡ 3 (mod 4);
(3) σ = 1 + i .

This can be easily seen by using Corollaries 1 and 2. For an alternate development
(not involving quadratic reciprocity) of the Gaussian primes, see [2] or [11, chap. 9].
We remark that σ and σ ′ are distinct primes and that each prime σ in Z[i] has four
distinct associates: σ, −σ, iσ, −iσ (also, −iσ is the complex conjugate of σ ′). With
this in mind, given a nonzero Gaussian integer a + bi , we can factor it in the manner

a + bi = i d ·
∏

σm
um ·

∏
σ ′

m
vm ·

∏
pm

em · (1 + i)n, (2)

where |σm|2 and |σ ′
m|2 are primes (in Z) congruent to 1 modulo 4, pm is a prime (in Z)

congruent to 3 modulo 4, and d, um , vm , em , and n are nonnegative integers for which
um ≤ vm . (Recall that the absolute value |x + yi | of a complex number x + yi is de-
fined to be

√
x2 + y2.)

4. THE MAIN RESULTS. We can now prove a general statement about the ele-
ments of any factor ring of Z[i] (this result is a generalization of one part of Theorem 1
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in [2], which covers only the case where one is factoring out by a power of a prime
ideal in Z[i]).
Theorem 4. If a, b, and k are positive integers with a and b relatively prime, then
the equivalence classes of Z[i]/〈ak + bki〉 are {[x + yi] : 0 ≤ x < k(a2 + b2),
0 ≤ y < k}.
Proof. We first show that the indicated equivalence classes are distinct. (Again,
we are simplifying our notation; [·] will represent [·]ak+bki , an equivalence class
modulo ak + bki .) If [x1 + y1i] = [x2 + y2i] with 0 ≤ x1, x2 < k(a2 + b2) and
0 ≤ y1, y2 < k, then

(x2 − x1) + (y2 − y1)i ∈ 〈ak + bki〉. (3)

Appealing to Fact 4, we conclude that k(a2 + b2) divides both a(x2 − x1) + b(y2 − y1)

and a(y2 − y1) − b(x2 − x1). In particular, k(a2 + b2) divides

b
{
a(x2 − x1) + b(y2 − y1)

} + a
{
a(y2 − y1) − b(x2 − x1)

}
,

which simplifies to the statement that k divides y2 − y1. Since both y1 and y2 are
nonnegative and smaller than k, y1 = y2. Thus k(a2 + b2) divides both a(x2 − x1) and
b(x2 − x1). Because a and b are relatively prime, k(a2 + b2) divides x2 − x1, implying
that x1 = x2 and ensuring that the equivalence classes are distinct.

We now demonstrate that any x + yi falls into one of these equivalence classes.
Since a and b are relatively prime, there exist integers s and t such that aks + bkt = k.
Thus, after a brief calculation, ki − (ak + bki)is − (ak + bki)t is found to be a real
number. It follows that the complex number ki is congruent modulo ak + bki to a real
number in Z[i]. This means that [x + yi] coincides with [x ′ + y′i] for some y′ satisfy-
ing 0 ≤ y′ < k. Finally, since the real number k(a2 + b2) is clearly in 〈ak + bki〉, we
can conclude that [x + yi] = [x ′′ + y′′i], with 0 ≤ x ′′ < k(a2 + b2) and 0 ≤ y′′ < k.

Theorem 4 allows us to do the first of the two exercises posed earlier in this paper.
We need only invoke the following corollary to Theorem 4:

Corollary 3. For a and b relatively prime, the characteristic of the factor ring
Z[i]/〈ak + bki〉 is |k|(a2 + b2).

Returning to the general factorization of a + bi in equation (2), we define s1 =∏ |σm |2um , s2 = ∏ |σ ′
m|2vm , and t = ∏

pm
em . We observe that s1, s2, t , and n are non-

negative integers, that |a + bi |2 = s1s2 · t2 · 2n , and that s1 divides s2. We now state
our main result.

Theorem 5. If a and b are integers, not both zero, then with the notation just intro-
duced and with Rn = Z[i]/〈(1 + i)n〉, the following hold:

Z[i]/〈a + bi〉 ∼= Zs1 ⊕ Zs2 ⊕ Zt [i] ⊕ Z2n/2[i]
for even n, and

Z[i]/〈a + bi〉 ∼= Zs1 ⊕ Zs2 ⊕ Zt [i] ⊕ Rn

for odd n.
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Proof. First, by the factorization (2), we can write

〈a + bi〉 =
〈∏

σm
um ·

∏
σ ′

m
vm ·

∏
pm

em · (1 + i)n
〉
. (4)

Since Z[i] is a Euclidean domain, we can apply the Euclidean algorithm to any two
relatively prime elements x and y in Z[i] to find s and t such that sx + t y = 1. It
follows that 〈x〉 + 〈y〉 = Z[i]. We can also state that 〈x〉 ∩ 〈y〉 = 〈xy〉, and thus we
can appeal to the Chinese Remainder Theorem for rings (a simple generalization of
the “traditional” Chinese Remainder Theorem discussed earlier; see also [4, p. 331])
to obtain

Z[i]/〈xy〉 ∼= Z[i]/〈x〉 ⊕ Z[i]/〈y〉.
Applying this to (4), we arrive at

Z[i]/〈a + bi〉 ∼= Z[i]
/ 〈∏

σm
um

〉
⊕ Z[i]

/ 〈∏
σ ′

m
vm

〉

⊕ Z[i]
/ 〈∏

pm
em

〉
⊕ Z[i]

/〈
(1 + i)n

〉
. (5)

We now show that (5) implies the stated result. For the first term on the right in (5),
write

∏
σm

um = c + di . Clearly, 2 does not divide (c + di), for 2 = i3(1 + i)2, and
likewise any prime p in Z such that p ≡ 3 (mod 4) is also prime in Z[i], hence cannot
divide c + di . Finally, for any prime q in Z with q ≡ 1 (mod 4) we have q = σm · σ ′

m
for some m, whence q cannot divide c + di . As a result, c and d are relatively prime
integers. We appeal to Theorem 2 to conclude that

Z[i]
/ 〈∏

σm
um

〉 ∼= Z[i]/〈c + di〉 ∼= Zc2+d2 ∼= Zs1 .

Similarly, the second term in (5) is isomorphic to Zs2 . Thanks to Theorem 1, the third
term is Zt [i]. The fourth term is, by definition, Rn . For even n, Rn simplifies. Since
(1 + i)2 = 2i , the ideal 〈(1 + i)n〉 can be rewritten as 〈(1 + i)n〉 = 〈(2i)n/2〉 = 〈2n/2〉.
Thus, Z[i]/〈(1 + i)n〉 = Z[i]/〈2n/2〉, which by Theorem 1 is isomorphic to Z2n/2[i], as
desired.

It is interesting to observe that, for odd values of n greater than 1, Rn does not have
a simple form.

Theorem 6. For k ≥ 0 the ring R2k+1 = Z[i]/〈(1 + i)2k+1〉 satisfies

R2k+1
∼= Z[x]/〈2k x, 2k+1, x2 + 2x + 2〉.

When k > 0, R2k+1 is not isomorphic to Zc, to Zc[i], or to any direct sum of rings of
these types.

Remark. For k = 0 the expression in Theorem 6 reduces to Z2. For an alternate proof
of the case k = 1, one can combine [2, Theorem 5] with [6, Theorem 4]. Indeed, the
case k = 1 (that is, the case of the ring R3) gives one of only three rings of order 8
with identity and with additive group Z4 ⊕ Z2. The others are the group Z4 ⊕ Z2 with
standard multiplication, and the ring Z4[2i] (see [6], [12], and [13]).
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Proof of Theorem 6. First, (1 + i)2k+1 = (1 + i)(1 + i)2k = (1 + i)2ki k . Since i k is
a unit, 〈(1 + i)2k+1〉 = 〈2k + 2ki〉. In view of Theorem 4 (or, alternatively, [2, Theo-
rem 1]), we know that the elements of R2k+1 are the equivalence classes [a + bi] with
0 ≤ a < 2k+1 and 0 ≤ b < 2k , giving 22k+1 elements in all.

Let I = 〈2k x , 2k+1, x2 + 2x + 2〉. It is straightforward to show that Z[x]/I con-
sists entirely of elements (really, equivalence classes) c + dx with 0 ≤ c < 2k+1 and
0 ≤ d < 2k . Hence it has the same number of elements as R2k+1.

Let φ : Z[x] → R2k+1 be defined by φ(p(x)) = [p(i − 1)]. This is clearly a sur-
jective ring homomorphism. Since φ(2k x) = [2k(i − 1)] = [i(2k + 2ki)] = [0], 2k x
is in ker(φ). Also, both 2k+1 and x2 + 2x + 2 are in ker(φ). Hence I ⊆ ker(φ). Let
p(x) belong to ker(φ). Since x2 + 2x + 2 is monic, p(x) = (x2 + 2x + 2)q(x) + r(x)

where both q(x) and r(x) are in Z[x] and r(x) = r0 + r1(x + 1) for integers r0 and r1.
Since r(x) lies in ker(φ), [r0 + r1i] = [0], so r0 + r1i is a member of 〈2k + 2ki〉. This
allows us to write r0 + r1i = (u + vi)(2k + 2ki). By comparing the real and imagi-
nary parts of the two sides of this equation we see easily that we can write r(x) =
u2k+1 + (u + v)2k x , which is clearly in I . Therefore p(x) is in I , so ker(φ) = I ,
making Z[x]/I isomorphic to R2k+1.

We now suppose that k > 0 and show that R2k+1 is not isomorphic to one of the
familiar rings listed in the statement of the theorem. The polynomial factor ring Z[x]/I
(and thus R2k+1) clearly has additive group Z2k+1 ⊕ Z2k under the map taking 1 to
(1, 0) and x to (0, 1) (for R2k+1, we could map 1 to (1, 0) and i to (1, 1)). Thus, R2k+1

cannot be ring-isomorphic to either Zc or Zc[i], and the only direct sum of these types
of rings to which it could possibly be ring-isomorphic would be Z2k+1 ⊕ Z2k . The
element 1 must map to the multiplicative identity (1, 1), and since i has additive order
2k+1, it would have a nontrivial image a in Z2k+1 . This would imply that a2 ≡ −1
(mod 2k+1). Since 2k+1 is divisible by 4, we would have a2 ≡ −1 ≡ 3 (mod 4), an
obvious impossibility.

5. EXAMPLES. In what follows, all isomorphisms are ring isomorphisms.

Example 1. Since 2 + i is prime in Z[i] (by Theorem 3), Theorem 2 or 5 gives

Z[i]/〈2 + i〉 ∼= Z5,

the finite field of five elements (thus working again the second of the two exercises
mentioned earlier).

Example 2. Also prime in Z[i] is 2 + 5i , yielding

Z[i]/〈2 + 5i〉 ∼= Z29.

Example 3. The ring Z[i]/〈11〉 is isomorphic to Z11[i], while Z[i]/〈13〉 ∼= Z13[i]. By
Fact 3, only the first is actually a field. We can also see this by noting that Theorem 5
(and the factorization 13 = i3 · (3 + 2i) · (2 + 3i)) tells us that Z[i]/〈13〉 is also iso-
morphic to Z13 ⊕ Z13, which clearly has zero divisors.

Example 4. Since 6 + 14i factors as i3 · (5 + 2i) · (1 + i)3,

Z[i]/〈6 + 14i〉 ∼= Z29 ⊕ R3.

Example 5. There is often more than one representation for these factor rings, as
seen in Example 3 (where Z[i]/〈13〉 ∼= Z13[i] ∼= Z13 ⊕ Z13). To continue this line of
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thought, we factor 3 + 9i as (2 + i) · 3 · (1 + i). Thus, Theorem 5 gives

Z[i]/〈3 + 9i〉 ∼= Z5 ⊕ Z3[i] ⊕ Z2,

which by the Chinese Remainder Theorem is also isomorphic to Z10 ⊕ Z3[i]. In a
similar manner, 156 = i · (3 + 2i) · (2 + 3i) · 3 · (1 + i)4, so

Z[i]/〈156〉 ∼= Z13 ⊕ Z13 ⊕ Z3[i] ⊕ Z4[i],
which by Theorem 1 is also isomorphic to Z156[i].
6. CONCLUSION. We would like to point out that much of this work can be done
in many different rings and algebraic number fields. For example, one might consider
Z[ω] for ω = (−1 + i

√
3)/2, a primitive third root of unity. This, too, is a Euclidean

domain, so one still has unique factorization into primes. Much of the theory presented
in this article would carry over to this new ring, including the existence of the trouble-
some factor rings Rn (albeit in a slightly different form). These factor rings Rn arise
because in the ring of integers for any algebraic number field K of degree 2 over Q

there is always an integer prime p such that 〈p〉 = A2 for some prime ideal A. For
Z[i], we see that 〈2〉 = 〈1 + i〉2, and in Z[ω] we have 〈3〉 = 〈2 + ω〉2. These primes
p are called ramified primes, and while this is a topic beyond the scope of this ar-
ticle, it is entirely appropriate for further study by interested students. A good place to
start might be [11] or [14] (see also [1] or [10]). Finally, the numbers a + bω in Z[ω]
are sometimes called the Eisenstein integers and were used by him to develop cubic
reciprocity. Eisenstein’s proof, as well as a more modern version, can be found in [8,
chap. 9].
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Day after long day passed, and still Hertz Yanovar was kept in the prison
cell. From moistened crumbs of bread he had fashioned a set of chessmen and
with the end of a spoon had scratched out a chessboard on the surface of the
bench. . . . When he got tired of the game, Hertz applied himself to mathematics.
He scrawled all sorts of algebraic symbols on the wall and made an attempt to
solve Fermat’s last theorem. He knew that his efforts were useless, especially
as the best mathematical minds had been unable to find a solution, but anything
was better than burying himself in the darkness of his own thoughts.

——Isaac Bashevis Singer, The Family Moskat, chapter 7, part 9, first pub-
lished in Yiddish and later serialized in The Jewish Daily Forward in
1950 and 1951; submitted by Irving Adler, North Bennington, Vermont
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