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Abstract.

For p prime and k ≥ 2, let us define G
(k)
p to be the digraph whose set of

vertices is {0, 1, 2, . . . , p− 1} such that there is a directed edge from a vertex
a to a vertex b if ak ≡ b mod p. We find a new way to decide if there is a
cycle of a given length in a given graph G

(k)
p .

Introduction.

Let k ≥ 2 be an integer and let p be prime. Let us define G
(k)
p to be

the digraph whose set of vertices is {0, 1, 2, . . . , p − 1} such that there is a
directed edge from a vertex a to a vertex b if ak ≡ b mod p.

This paper extends the results given in the works [6] by Somer and Kř́ıžek
(which provides a way to determine whether there is a cycle of length t in

a given graph G
(2)
p ), and [8] by Wilson (which considers G

(k)
p ; see also [7] by

Somer and Kř́ıžek). In this paper, we provide our own way to determine the

existence of a cycle of given length in G
(k)
p . First, we examine the existence

of length-t cycles where t is prime. Later on, we explore the case of cycles
of length u where u is composite, and we conclude with a study of digraphs
that admit some cycle lengths but do not allow others.

Now, we will introduce one of the key theorems of this paper; this is men-
tioned in the number theory book [4] by Niven, Zuckerman, and Montgomery.
Here, φ stands for the Euler totient function.

Theorem 1. Suppose that m = 1, 2, 4, pα or 2pα, where p is an odd prime and
α is a positive integer. If gcd(a,m) = 1 then the congruence xn ≡ a mod m
has gcd(n, φ(m)) solutions or no solution, according as

aφ(m)/ gcd(n,φ(m)) ≡ 1 mod m

or not.
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On the existence of length-t cycles given t prime, and
length-u cycles given u ≥ 2.

Based on the theorem in our introduction, we have the following corol-
laries, which are crucial in determining the existence of a length-t cycle for t
prime.

Corollary 2. Let p be a prime. The congruence xn ≡ 1 mod p has gcd(n, p−
1) solutions.

Corollary 3. Let p be a prime and let k ≥ 2. The subgraph G
(k)
p \{0} has

gcd(k − 1, p− 1) cycles of length 1.

Since we are curious about the existence of length-t cycles in G
(k)
p given t

prime, we want to know if the following equations have any solutions:

xk
t ≡ x mod p,

xk 6≡ x mod p.

By our two corollaries, the above equations are equivalent to:

gcd(kt − 1, p− 1) > gcd(k − 1, p− 1).

Similarly, since we are also curious about the existence of length-u cycles in
G

(k)
p given u composite, we want to know if the following equations have any

solutions (here, ui runs over the proper divisors of u):

xk
u ≡ x mod p,

xk
u1 6≡ x mod p,

xk
u2 6≡ x mod p,

...

Once again, our corollaries tell us that the above equations are equivalent to:

gcd(ku − 1, p− 1) > gcd(kui − 1, p− 1)

for ui running over all proper divisors of u. So, we have the following results:

Theorem 4. Given u ≥ 2, k ≥ 2, and p prime, there exists a length-u cycle
in G

(k)
p if and only if gcd(ku − 1, p − 1) > gcd(ku

′ − 1, p − 1) for all proper
divisors u′ of u.
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Remark. We note that Theorem 4 follows from Theorem 5.6 of [7], which
also gives formulas for how many cycles exist of a given length; if t is prime,
for example, then the number of length-t cycles is

(
gcd(kt−1, p−1)−gcd(k−

1, p− 1)
)
/t.

We also note the following theorem, which is a result of [3, pp. 230-231].
It is also a special case of a more general result in [8, pp. 232-233]. Another
version with k = 2 appeared in [6, Theorem 3.3].

Theorem 5. (Lucheta, Miller, Reiter) Let p be a prime. There exists a cycle

of length u in G
(k)
p if and only if u = ordd k for some divisor d of p− 1 with

gcd(d, k) = 1, where ordd k denotes the multiplicative order of k modulo d.

Here are four corollaries following from Theorems 4 and 5 that give us precise
information on what cycle lengths are possible (or impossible) in G

(k)
p for

various primes p and powers k:

Corollary 6. Fix a prime t. Given any integer k ≥ 2, there are infinitely
many primes p such that G

(k)
p has a length-t cycle. Moreover, G

(k)
p contains

a 1-cycle for all primes p;

Corollary 7. Fix an integer u ≥ 2. Given any integer k ≥ 2, there are
infinitely many primes p such that G

(k)
p does not have a length-u cycle;

Corollary 8. Fix an integer u ≥ 2. Let p = 22n + 1 be a Fermat prime,
where n ≥ 0. The possible cycle lengths in G

(k)
p for p a Fermat prime are

very limited.

1. There are never any odd-length cycles (aside from the length-1 cycles),

2. If k is even, there are no cycles at all (aside from the length-1 cycles)

in G
(k)
p ,

3. If k is odd and u is even, G
(k)
p contains a length-u cycle if and only if

u | ordp−1 k. Moreover, ordp−1 k | 22n−2 if n ≥ 2 and ordp−1 k | 22n−1 if
n = 0 or 1.
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Corollary 9. Fix an integer u ≥ 2, and let p be prime. Then, there are
infinitely many integer k’s such that G

(k)
p contains no length-u cycle.

Proof of Corollary 6. Since gcd(1,
t−1∑
i=0

ki) = 1, then by Dirichlet’s Theorem

on the infinitude of primes in arithmetic progressions we know that there are

infinitely many primes p such that p ≡ 1 mod
t−1∑
i=0

ki. Now given such a prime

p, we have gcd

(
(k − 1)

t−1∑
i=0

ki, p− 1

)
≥

t−1∑
i=0

ki, or gcd(kt − 1, p− 1) ≥
t−1∑
i=0

ki.

On the other hand, gcd(k − 1, p − 1) ≤ k − 1. Since it is not hard to see

that k − 1 <
t−1∑
i=0

ki, we have gcd(kt − 1, p − 1) > gcd(k − 1, p − 1). Thus,

by Theorem 4, we can conclude that there are infinitely many primes p such
that G

(k)
p has a length-t cycle, as desired. Finally, the last assertion of our

statement holds, since both 0 and 1 are clearly vertices in 1-cycles.

Proof of Corollary 7. Let q1, q2, . . . be the odd primes in order of size, and
let qr be the largest prime less than or equal to ku; since both u and k are
at least two, then qr is at least three. By the Chinese Remainder Theorem
and Dirichlet’s Theorem, there exist infinitely many primes p such that:

p ≡ 3 mod 4,

p ≡ 2 mod q1q2 . . . qr.

The first line implies that 2|p− 1 but 4 - p− 1, while the second line implies

that p − 1 is relatively prime to q1q2 . . . qr. Now suppose that G
(k)
p actually

does have a length-u cycle for u ≥ 2. It follows from Theorem 5 that u =
ordd k for some divisor d > 1 of p − 1 (note that if d = 1 then this would
imply u = 1, a contradiction), with d relatively prime to k. Let us consider
the options, keeping in mind what we just wrote about p − 1. If k is odd,
then either d = 2 or d ≥ qr+1, But if d = 2 then u = ord2 k = 1 which is a
contradiction. Hence, our only option is d ≥ qr+1. If k is even, then d must
be odd and so again our only option is d ≥ qr+1. But with d ≥ qr+1, then
since 1 < ku < qr+1 we have that u is not, in fact, the order of k mod d,

which contradicts our statement earlier that u = ordd k. Hence, G
(k)
p does

not have a length-u cycle for u ≥ 2.
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Before we move on to the next proof, we need to establish this useful
result.

Lemma 10. For k odd and a ≥ 2, then ord2a+1 k is either equal to ord2a k
or to 2 ord2a k.

Proof of Lemma 10. If we let w = ord2a k, then we know that 2a|kw − 1.
Consider k2w − 1 = (kw − 1)(kw + 1). We know that 2a divides kw − 1 and
since k is odd then 2 divides kw + 1, so we know 2a+1 divides k2w−1. Hence,
ord2a+1 k divides 2w, but ord2a+1 k is at least w, and so we conclude that
ord2a+1 k is either w or 2w, as desired.

We are now ready for the following:

Proof of Corollary 8. Let p be the Fermat prime 22n + 1 where n ≥ 0, so
p − 1 = 22n . Now, suppose that G

(k)
p contains a cycle of length u ≥ 2.

Then by Theorem 5, u = ordd k for some divisor d of p − 1 = 22n . By
Euler’s generalization of Fermat’s Little Theorem, this implies u|φ(d), but
d is a power of 2 and so (thanks to the well-known formulas for Euler’s phi
function) this implies u is as well. We also have (from Theorem 5) that d
and k are relatively prime; since u|d then we know u and k are relatively
prime as well. With this in mind, let us consider the possibilities for u and
k. We can not have u ≥ 2 be an odd integer, as this contradicts u ≥ 2 being
a power of 2; hence, G

(k)
p never contains a cycles of length u ≥ 2 for u odd.

We also can not have u and k both be even integers, as this contradicts u
and k being relatively prime; hence, G

(k)
p contains no cycles of length u for u

and k both even.
The only option left is to have u ≥ 2 even and k ≥ 2 odd. Theorem

5 tells us that we have a length-u cycle iff u = ordd k for some divisor d
of p − 1; let us establish that this is equivalent to u| ordp−1 k. For the first
Fermat prime p = 22n + 1 = 3, corresponding to n = 0, it is easy to verify
that there are no even-length cycles in G

(k)
3 because this graph contains only

the vertices {0, 1, 2}; likewise, ordp−1 k = 1 and this admits no even divisors.
For the next Fermat prime p = 22n + 1 = 5, corresponding to n = 1, similar
calculations reveal that we can have even length-u cycles only for k ≡ 3 mod
4 and for u = 2, in which case u is indeed an even divisor of 2 = ordp−1 k
(and vice versa). For both those two cases (namely, for p = 22n + 1 with
n = 0 or 1), it is easy to check that ordp−1 k|22n−1, as desired.

It remains to consider the other Fermat primes p = 22n + 1 for n ≥ 2. If
u = ordd k for some divisor d of p− 1 = 22n , then (recalling that u and d and
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p−1 are all powers of 2) it is certainly true that u| ordp−1 k as ordd k can not
be greater than ordp−1 k and both are powers of 2. For the other direction,
suppose u| ordp−1 k, and let us show that u = ordd k for some divisor d of
p− 1. Starting with 1 as the order of k mod 2, we imagine finding the orders
of k mod 22, mod 23, mod 24, and so on, up to mod 22n . Lemma 10 tells us
that at each step, the order of k either stays the same or doubles. At the last
step in this sequence (modulo 22n) the order of k is a multiple of u. Hence,
at some step along the way (say, when our modulus is 2b for b ≤ 2n) we know
that the order of k mod 2b is equal to u. Hence, we let d = 2b and we have
that u = ordd k for d a divisor of p− 1, as desired.

Finally, we recall from [2, p. 160] that the multiplicative group of units
modulo 22n , commonly written (Z22n )∗, is isomorphic to Z22n−2⊕Z2 for n ≥ 2.
Hence, the order of any odd number k modulo p−1 will be a divisor of 22n−2,
as desired.

Proof of Corollary 9. Note that if p is a Fermat prime, then by Corollary 8
we can simply choose k to be any even number. Of course, for p = 2 the
conclusion is trivial. For the more general case, we choose k ≥ 2 to be an
integer equivalent to 1 mod p− 1. There are clearly infinitely many such k.
Note that gcd(k, p− 1) = 1 and also k ≡ 1 mod d for any divisor d of p− 1.
Thus, ordd k = 1 for any divisor d of p − 1 and so by Theorem 5 we know
G

(k)
p has no u-cycles for any u ≥ 2.

On the existence of cycles of different lengths in the
same digraph.

We now consider cycles of composite length, and we show that the exis-
tence of certain cycles imply the existence of other, longer cycles.

Theorem 11. Let u = lcm(u1, u2) where u1 and u2 are positive integers. If

G
(k)
p contains cycles of length u1 and length u2 respectively, then G

(k)
p also

contains a cycle of length u.

Proof. Suppose in G
(k)
p , there exist cycles of length u1 and u2. By Theorem

5, we know that there exist d1 and d2 such that d1 | (p− 1), d2 | (p− 1) and
u1 = ordd1 k, u2 = ordd2 k. Also, let d = lcm(d1, d2) and u = lcm(u1, u2).
Since d1 | (ku1 − 1) and u1 | u, we have d1 | (ku− 1). By the same reasoning,
d2 | (ku − 1). Therefore, d | (ku − 1); i.e., ku ≡ 1 mod d. So, gcd(d, k) = 1.
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Assume that there exists u′ ≤ u such that ku
′ ≡ 1 mod d. So, ku

′ ≡ 1 mod d1
and ku

′ ≡ 1 mod d2. Since u1 is the order of k mod d1, therefore u1 | u′.
Likewise, u2 | u′. Therefore, lcm(u1, u2) | u′, i.e., u | u′; so u ≤ u′. By
assumption we know that u′ ≤ u; thus, u = u′. So, the order of k mod d is
u. Since d = lcm(d1, d2), we have d | (p − 1). So again by Theorem 5, we

know there is a length-u cycle in G
(k)
p .

Corollary 12. Let u = lcm(u1, u2, u3, · · · , un), where u1, u2, · · · , un are pos-

itive integers. If G
(k)
p contains a cycle of length ui for each i, then G

(k)
p also

contains a cycle of length u.

It turns out that for even k, the opposite direction is not always true. In
a few pages we present a digraph G

(k)
p that has a 12-cycle and a 1-cycle but

no cycles of length 2, 3, 4, or 6. The following result indicates that this is
hardly an isolated occurrence.

Theorem 13. Let u be a composite number and let k be even.

1. If k 6= 2 or u 6= 6, then there exists infinitely many primes p such that
in G

(k)
p , there exists a length-u cycle but no length-u′ cycles in which

u′ ≥ 2 is a positive divisor of u.

2. For the case k = 2 and u = 6, suppose for some prime p that G
(2)
p has

a cycle of length 6. Then there must also exist a cycle of either length
2 or 3 in G

(2)
p ; furthermore, if G

(2)
p has cycles of length 6 and 3 then

it must also have a cycle of length 2. The smallest prime p such that
G

(2)
p has both a length-6 and a length-2 cycle is p = 19; in this case,

though, G
(2)
19 does not have a length-3 cycle. The smallest prime p such

that G
(2)
p has cycles of length 2, 3, and 6 is p = 43.

Before we start our proof, we need to introduce a very useful lemma
proved independently by Bang [1] and Zsigmondy [9], as seen in a recent
paper by Roitman [5]:

Lemma 14 (Bang and Zsigmondy). Let k and u be integers greater than 1.
There exists a prime divisor q of ku − 1 such that q does not divide kj − 1
for all j where 0 < j < u, except exactly in the following cases:

1. k = 2s − 1 where s ≥ 2, and u = 2;

2. k = 2 and u = 6.
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Proof of Theorem 13. First, let us discuss the case where k = 2 and u = 6;
that is, we suppose there exists a length-6 cycle in G

(2)
p . By Theorem 4, we

must have gcd(26 − 1, p − 1) > 1. Now since 26 − 1 = 63, then p − 1 must
be divisible by either 7 or 3. Since 23 − 1 is 7 and of course 22 − 1 is 3, we
conclude that either gcd(23−1, p−1) > 1 or gcd(22−1, p−1) > 1 and hence
(again by Theorem 4) we must have a cycle of length 3 or length 2. Now

suppose (for the sake of argument) that G
(2)
p happens to have both a length-6

cycle and a length-3 cycle but no length-2 cycle. If we let Ai represent the
number of cycles of length i in the graph of G

(2)
p , then Theorem 5.6 of [7]

tells us:

A6 =
1

6
(gcd(p− 1, 63)− A1 − 2A2 − 3A3)

Clearly, A1 = 1 since the only non-trivial solution to x2 ≡ x mod p is x = 1.
We are assuming that A2 = 0 and that A3 and A6 are both positive, and so
the above equation becomes

A6 =
1

6
(gcd(p− 1, 63)− 1− 3A3)

Since A3 > 0, then for A6 to be a non-zero integer we must have gcd(p−1, 63)
be either 9, 21, or 63, all equivalent to 3 mod 6. But 1+3A3 will be equivalent
to 1 or 4 mod 6, and the difference of these two expressions can never be
0 mod 6, which contradicts A6 being an integer. Hence, the presence of a
length-6 cycle and a length-3 cycle really does force there to be a length-2
cycle.

By inspection, p = 19 is the smallest prime p such that G
(2)
p has a 6-

cycle and a 2-cycle; it is easily seen that it does not have a 3-cycle. Also
by inspection, p = 43 is the smallest prime p such that G

(2)
p has a 6-cycle, a

2-cycle, and a 3-cycle. See below for the graph of G
(2)
19 .

Now if k 6= 2 or u 6= 6, then in order to prove the theorem it is sufficient
to show that there are infinitely many primes p such that for the graph G

(k)
p ,

the following conditions hold: For u1, u2, . . . non-trivial proper divisors of u,

gcd(ku − 1, p− 1) > 1,

gcd(ku1 − 1, p− 1) = 1,

gcd(ku2 − 1, p− 1) = 1,

...
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Figure 1: The digraph G
(2)
19 has a 6-cycle and 2-cycle but no 3-cycle.
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(Note that by Corollaries 2 and 3, these equations will also imply that the

only cycles of length 1 in G
(k)
p will be the 1-cycle with vertex 0 and the

1-cycle with vertex 1.) By Lemma 14, we know that there exists a prime
divisor q | ku − 1 such that q - kj − 1 for 0 < j < u. Now, consider the
following set of equivalence relations:

p− 1 ≡ 0 mod q, (1)

p− 1 ≡ 1 mod s, (2)

where s = lcm(ku1 − 1, ku2 − 1, · · · ). Since q is prime, it is obvious that q - s
and therefore we can apply the Chinese Reminder Theorem to get:

p− 1 ≡ q[q−1]s mod qs,

where [q−1]s is the unique positive integer less than s that is the inverse of q
modulo s.

Thus, p = (q[q−1]s + 1) + qs · n where n ∈ N. Since q[q−1]s ≡ 1 mod s,
we know that q[q−1]s + 1 ≡ 2 mod s, so gcd(q[q−1]s + 1, s) ≤ 2. Now k
is even, so s is odd, so we know gcd(q[q−1]s + 1, s) = 1. On the other
hand, it is obvious that q - q[q−1]s + 1, therefore gcd(q[q−1]s + 1, qs) = 1.
Thus, by Dirichlet’s Theorem, there are infinitely many prime p’s of the
form p = (q[q−1]s + 1) + qs · n, as desired.

Now, let us do some examples to illustrate the methods given above.

Example: For p a prime, p ≡ 11 mod 15, then G
(2)
p always has a 4-cycle

but never has a 2-cycle. This can be shown via the methods of the above
proof with k = 2, u = 4, and u1 = 2, so q = 5 and s = 3. The two smallest
primes p of this type are 11 and 41. The digraph for G

(2)
11 is given on the

following page (Figure 2).

Example: Likewise, using k = 2, u = 9, and u1 = 3, we can show that
for p a prime equivalent to 366 mod 511, then G

(2)
p always has a 9-cycle but

never has a 3-cycle. The smallest prime equivalent to 366 mod 511 is 877,
and a partial digraph for G

(2)
877 is given on the following page (Figure 3).

Example: Finally, using k = 2, u = 12, and {u1, u2, u3, u4} equal to
{2, 3, 4, 6}, then the techniques of our proof of Theorem 13 show that for p

a prime, p ≡ 1262 mod 4095, then G
(2)
p always has a 12-cycle but never has
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Figure 2: The digraph G
(2)
11 has a 4-cycle but no 2-cycle.

cycles of length 2, 3, 4, or 6. The smallest p in this equivalence class is 21737.
(We note that this is the smallest prime that arises from the technique of

Theorem 13, but it is not the smallest prime p such that G
(2)
p has a cycle of

length 12 but none of lengths 2, 3, 4, or 6; experimentation shows that the
first such prime would be 53, not 21737. We will explain this further in a
moment.)

One problem with the above examples (all of which arise from the tech-
niques of Theorem 13) is that while they guarantee an infinite list of primes
that satisfy the given requirements, it is not necessarily a complete list. For
example, suppose we want to find all primes p such that for G

(2)
p , we have

cycles of length 12, but no cycles of length 2, 3, 4, or 6. By Example 3, we
know that any prime of the form p ≡ 1262 mod 4095 will certainly work (and
the first prime in this list is 21737). But as mentioned above, p = 53 works
just fine as well. Let us see if we can demonstrate how to find all such primes
p such that the digraphs G

(2)
p will have cycles of length 12 but not length 2,

3, 4, or 6.
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Figure 3: The digraph G
(2)
877 has eight components of forms [A] and [B] each,

and just 1 component of forms [C], [D], and [E] respectively. In particular,
it has a 9-cycle but no 3-cycle.

In order to find such p’s, we need

gcd(212 − 1, p− 1) > 1, (3)

gcd(26 − 1, p− 1) = 1, (4)

gcd(24 − 1, p− 1) = 1, (5)

gcd(23 − 1, p− 1) = 1, (6)

gcd(22 − 1, p− 1) = 1, (7)

gcd(21 − 1, p− 1) = 1. (8)

By Lemma 14, we know there exists a prime divisor q such that q | 212−1
but q - 2i − 1 where i ∈ {2, 3, 4, 6}, and a brief calculation shows us that
q = 13. Therefore, we have 13| gcd(212 − 1, p − 1) and so it follows that
p − 1 = 13n, or p = 13n + 1. In order for (4), (5), (6), and (7) to hold, we
must make sure that n does not contain any proper divisor of (2i− 1) where
i ∈ {2, 3, 4, 6}; that is, 3, 5, and 7 must not divide n. So, a complete list of
primes p can be written as a set {p is prime : p = 13n + 1 where n ∈ N and
3, 5, 7 - n}. The smallest p is indeed 53.

If we glance at equations (3) through (8), we might wonder if we can
modify them to give us more liberty in deciding what cycles we want to have
and not have in our G

(k)
p . Suppose we want to change the above example to
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have a digraph with cycles of length 12 and 2, but no other cycles of length
3, 4, or 6. By Theorem 4, we need to start with the following:

gcd(212 − 1, p− 1) > gcd(22 − 1, p− 1) > 1.

Since 22− 1 | 24− 1 and 22− 1 | 26− 1, then we know that gcd(24− 1, p− 1)
and gcd(26− 1, p− 1) will both be at least as large as gcd(22− 1, p− 1), but

to prevent G
(2)
p from having cycles of length 4 or length 6, we need them to

be no larger than gcd(22− 1, p− 1). Finally, to avoid any 3-cycles, we would
like gcd(23 − 1, p − 1) = 1. We can satisfy all these requirements if we are
able to establish the following six equations:

gcd(212 − 1, p− 1) = q2q12, (9)

gcd(26 − 1, p− 1) = q2, (10)

gcd(24 − 1, p− 1) = q2, (11)

gcd(22 − 1, p− 1) = q2, (12)

gcd(23 − 1, p− 1) = 1, (13)

gcd(21 − 1, p− 1) = 1, (14)

where q2 and q12 are both primes. (Note the similarity between these six
equations and the ones given earlier in equations (3) through (8).)

Fortunately, this is indeed possible. Lemma 14 guarantees that we can
find appropriate primes q2 and q12; our choices here will be q2 = 3 and
q12 = 13. We also need to ensure that p−1 does not contain any other primes
that might also appear in 2k − 1 as k runs over the divisors of 12. This can
be satisfied by restricting ourselves to the set {p is prime : p = 39n+1 where
n ∈ N and 3, 5, 7 - n}. It turns out the smallest such p is 79.

Naturally, we seek to generalize this technique, and the following theorem
gives the appropriate conditions in which this can be done.

Theorem 15. Let u ≥ 4 be any composite number, let k ≥ 2, and let u′ ≥ 2
be a proper divisor of u. So long as we do not have either k = 2 and u′ = 6,
or k = 2 and u = 6 and u′ = 3, then there exist infinitely many primes p
such that G

(k)
p has both a u-cycle and a u′-cycle but has no w-cycle, where w

is any other non-trivial proper divisor of u.

Remark. The two restrictions in the above theorem are thanks to Theorem
13, which tells us that every digraph G

(2)
p which contains a 6-cycle will also
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contain either a 2-cycle or 3-cycle, and that if it contains a 6-cycle and 3-cycle
then it must also have a 2-cycle.

Proof of Theorem 15. We begin by considering the case where k is even and
different from 2. This avoids the two exceptions to Lemma 14, and so we
know that there exist two separate primes q and q′ such that q|ku − 1 but
q - kw − 1 for all w < u, and q′|ku′ − 1 but q′ - kw − 1 for all w < u′. Since
k is even, then the primes q and q′ are necessarily odd. We want to set up
a system similar to the ones in equations (9) through (14); in this context,
our system will be the following:

gcd(ku − 1, p− 1) = qq′, (15)

gcd(ky − 1, p− 1) = q′ if y < u and y divisible by u′, (16)

gcd(kz − 1, p− 1) = 1 if z < u and z not divisible by u′. (17)

(Here, y and z run over the proper divisors of u.) These three conditions,
along with Theorem 4, would guarantee the existence of a cycle of length u
and of length u′ and would prohibit any cycles of length w for w any other
non-trivial divisor of u. It remains to show that there are infinitely many
such primes p that satisfy (15), (16), and (17). Fortunately, this is not too
hard. Let Q be the product of all the primes other than q and q′ that divide
ku − 1. Since neither q nor q′ divide k1 − 1 and since k > 2 then there is at
least one such prime, and since k is even then all such primes in Q are odd
primes. If we now require the following

p− 1 ≡ qq′ mod (qq′)2, (18)

p− 1 ≡ 1 mod Q, (19)

then we are guaranteed (15), (16), and (17), as we now briefly demonstrate.

• To begin with, note that (18) tells us that qq′ divides into p−1, but no
higher power of q or q′ does so. Also, (19) tells us that no other prime
ρ that divides into Q will also divide into p − 1. Hence, the gcd’s in
equations (15) through (17) must be either 1, q, q′, or qq′.

• To establish equation (15), we note that by definition both q and q′

divide into ku − 1.
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• For (16), we note that q′ divides into ku
′ − 1 which divides into ky − 1

for y divisible by u′, and that q does not divide into any ky − 1 for
y < u.

• As for (17), note that kz−1 is not divisible by q for any z < u. If kz−1
was divisible by q′, then q′ would divide the gcd of kz − 1 and ku

′ − 1.
This gcd is kd−1 where d = gcd(z, u′) and since z is not divisible by u′

then we know d < u′, but this contradicts our definition of q′. Hence,
kz − 1 is not divisible by either q or q′ and so we have established (17).

We can now apply the Chinese Remainder Theorem to write (18) and
(19) as p− 1 ≡ A mod Q(qq′)2 for some integer A, which implies

p ≡ 1 + A mod Q(qq′)2

Are we now able to apply Dirichlet’s theorem to claim that there are infinitely
many primes that satisfy the above equivalence? Almost! We need only
ensure that 1 + A is relatively prime to Q(qq′)2. Since (18) tells us that
A ≡ 0 mod q, then A + 1 ≡ 1 mod q, and the same holds for q′. Hence,
A+ 1 is relatively prime to q and to q′. Now let ρ be one of the primes that
divides Q. We know from (19) that A ≡ 1 mod ρ, which means A + 1 ≡ 2
mod ρ, but of course ρ is an odd prime, so A + 1 is relatively prime to ρ.
We conclude that A + 1 is relatively prime to Q(qq′)2, and so we can apply
Dirichet’s theorem to complete the proof (for this case where k even and
k > 2).

Next, we consider k = 2, u = 6, and u′ = 2. This is a very specific case,
and if we set p ≡ 19 mod 63 to be prime, it is easy to verify that all four of
these equations are satisfied:

gcd(26 − 1, p− 1) = 9 (20)

gcd(22 − 1, p− 1) = 3, (21)

gcd(23 − 1, p− 1) = 1, (22)

gcd(21 − 1, p− 1) = 1. (23)

Naturally, there are infinitely such primes p (the first one is p = 19) and

Theorem 4 tells us that G
(2)
p will have a 6-cycle and a 2-cycle but never a

3-cycle.
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Next, consider k = 2 with neither u nor u′ equal to 6. Since this avoids
the exceptions to Lemma 14, then as before we can find the two separate
primes q and q′ such that q|ku− 1 but q - kw− 1 for all w < u, and q′|ku′ − 1
but q′ - kw− 1 for all w < u′. We would like to define Q to be the product of
all primes ρ different from q and q′ that divide 2u − 1, but it is possible that
no such primes ρ exist (consider, for example, q = 73 a factor of 29 − 1, and
q′ = 7 a factor of 23 − 1: there are no other prime factors of 29 − 1). If this
is the case, simply set Q = 1 and proceed as before.

Next, consider when k > 2 is odd and we do not have u′ = 2 and k = 2s−1
with s ≥ 2. Lemma 14 gives us the primes q and q′ as before, and since q
and q′ do not divide k1−1 (by definition) then both q and q′ are odd primes.
However, in our earlier work, equations (15) through (17) depended on some
of the equations gcd(kz − 1, p − 1) being equal to 1, but now that kz − 1 is
even then this is no longer possible. Instead, we will ask that p ≡ 3 mod
4 (which will mean that p − 1 is divisible by 2 and not 4), and we seek to
establish the following system:

gcd(ku − 1, p− 1) = 2qq′, (24)

gcd(ky − 1, p− 1) = 2q′ if y < u and y divisible by u′, (25)

gcd(kz − 1, p− 1) = 2 if z < u and z not divisible by u′. (26)

By Theorem 4 this will be sufficient to create our desired digraph G
(k)
p . But

can we can find primes p that satisfy (24), (25), and (26)? Of course! Let Q
be the product of all the odd primes other than q and q′ that divide ku − 1,
with the understanding that if no such primes exist then Q = 1. If we now
require the following

p− 1 ≡ qq′ mod (qq′)2, (27)

p− 1 ≡ 1 mod Q, (28)

p− 1 ≡ 2 mod 4. (29)

then we are guaranteed (24), (25), and (26), as we now briefly demonstrate.

• As seen earlier, note that (27) tells us that qq′ divides into p−1, but no
higher power of q or q′ does so. Also, (28) tells us that no other prime
ρ that divides into Q will also divide into p− 1. And, (29) guarantees
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that 2|p − 1 but 4 does not. These observations, along with k − 1
being even, tell us that the gcd’s in equations (24) through (26) must
be either 2, 2q, 2q′, or 2qq′.

• To establish equation (24), we note that both p − 1 and ku − 1 are
divisible by q and q′.

• For (25), we note that q′ divides into ku
′ − 1 which divides into ky − 1

for y divisible by u′, and that q does not divide into any ky − 1 for
y < u. This is identical to our proof for (16).

• Likewise, (26) is proved the same way as (17).

As before, we can now use the Chinese Remainder Theorem to write p = 1+A
mod 4Q(qq′)2 for some appropriate A, and it is easy to show that 1 +A and
4Q(qq′)2 are relatively prime, thus allowing us to finish the proof by using
Dirichlet’s Theorem.

The very last case to consider is when k = 2s − 1 for s ≥ 2, and u′ = 2.
The issue here is that k − 1 and ku

′ − 1 will have exactly the same prime
divisors (just to different powers) so we can not find an appropriate prime
q′ as we did earlier, where q′ was supposed to divide ku

′ − 1 but not k − 1.
Instead, we have to proceed as follows. First, choose a prime q such that
q|ku− 1 but q - kw− 1 for all w < u. Note that q is necessarily odd. We now
seek to establish the following:

gcd(ku − 1, p− 1) = 4q, (30)

gcd(ky − 1, p− 1) = 4 if y < u and y divisible by 2, (31)

gcd(kz − 1, p− 1) = 2 if z < u and z not divisible by 2. (32)

To do this, we let Q be the (possibly empty) product of all the odd primes
other than q that divide into ku − 1, and we require the following:

p− 1 ≡ q mod q2, (33)

p− 1 ≡ 1 mod Q, (34)

p− 1 ≡ 4 mod 8. (35)

Once more, we can easily show that (33), (34), and (35) imply (30), (31),
and (32)
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• Equations (33), (34), and (35) imply that p−1 is divisible by q but not
q2, by 4 but not 8, and by no other prime factor ρ of ku − 1. Keeping
in mind that k is odd, we see that the gcd’s in equations (31) and (32)
must be either 2 or 4, and in (30) we must have either 2q or 4q.

• To establish that equation (30) is equal to 4q and not 2q, we note that
ku − 1 is divisible by k2 − 1 which (since k = 2s − 1) is divisible by 4.

• For (31), we note again that ku − 1 is divisible by 4.

• Finally, for z odd, then kz − 1 factors as (k− 1)(kz−1 + kz−2 + · · ·+ 1).
The first expression is k − 1 = 2s − 2, divisible by 2 but not 4. The
second expression is the sum of an odd number of odd terms, hence
odd. Thus, (32) is indeed equal to 2 and not 4.

As before, we summarize (33), (34), and (35) as a single expression p = 1+A
mod 8Qq2 for some appropriate A, and it is now fairly routine to finish the
proof by using Dirichlet’s Theorem.
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