2035. Proposed by Gregory Dresden, Prakriti Panthi (student), Anukriti Shrestha (student) and Jiahao Zhang (student), Washington $\mathfrak{B}^{\mathcal{G}}$ Lee University, Lexington, VA.

Two real numbers x, y are said to have a common decimal part if $x y<0$ and $x+y$ is an integer, or else $x y \geq 0$ and $x-y$ is an integer. More concretely, this means that the decimal expansions of x, y are of the forms

$$
\begin{aligned}
& \pm a_{m} a_{m-1} \ldots a_{1} a_{0} \cdot d_{1} d_{2} d_{3} \ldots, \\
& \quad \pm b_{n} b_{n-1} \ldots b_{1} b_{0} \cdot d_{1} d_{2} d_{3} \ldots,
\end{aligned}
$$

where the common decimal part is $0 . d_{1} d_{2} d_{3} \ldots$
Find all polynomials of degree at least 2 with integer coefficients, all roots real, and irreducible over the rationals, whose roots have pairwise common decimal tails.

