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RESULTANTS OF CYCLOTOMIC POLYNOMIALS

GREGORY DRESDEN

In this paper we present a new and elementary proof of a theorem
about resultants of cyclotomic polynomials ®,(z), and we prove an
enhanced and constructive version of an old result about linear combi-
nations of cyclotomics. The two theorems are as follows.

Theorem 1 [1, 2, 5, 6]. For 0 <m < n integers, then

d(m) 4 ; .
Res (®,,, ®,) = {p if n/m is a power of prime p,
1 otherwise.

Since the above Theorem 1 was proved at least four separate times
1, 2, 5, 6], we feel justified in offering a fifth proof, this time using
very little machinery.

The second theorem of our paper involves linear combinations of
cyclotomic polynomials.

Theorem 2 [3]. Let n and m be positive integers with m < n. Then,
we have (explicit) polynomials u(x) and v(z) in Z[x] such that

(1) B, (@)u() + Do (2)0(z) = k

where k is equal to prime p if n/m = p', and equal to 1 if not. This k
s the smallest such positive integer that can be written in this manner.

Filaseta gave two proofs of Theorem 2 in his paper [3]. The first proof
involved cyclotomic extensions Q(({,), and the second proof (this one
by Schinzel, via private communication to Filaseta) used Theorem 1 on
the resultant of cyclotomic polynomials.

We proceed as follows. We begin with an independent proof of The-
orem 2, using neither the cyclotomic extensions of Filaseta nor the
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resultants of Schinzel, but instead only elementary facts about cyclo-
tomic polynomials. Along the way, we also give explicit formulas for
polynomials u(z) and v(z) in the statement of the theorem, something
which has not been done before. We then use Theorem 2, along with
some basic statements about determinants and resultants, to prove
Theorem 1, thus establishing the equivalence of these two theorems.

Proof of Theorem 2. We begin by reminding ourselves of some
basic facts about cyclotomic polynomials, as seen in Filaseta’s paper
[3] and elsewhere.

Lemma 3. For p prime, then

D, (zP) ifpln
Py (2) = .
D, (2P) /P, (x) otherwise.
Two immediate consequences are:

1. @i, () equals ®,, (xpi) if p | n and equals ¥, (xpi Y@ (2P ifpin.
2. For a,b € Z*, then ®u(z) | ®o(a?).

Lemma 4. Let k be an integer > 1. Then,

By(1) = {p if k=1p" for somer € Z*
1 otherwise.

We now proceed to give two lemmas that describe the exact poly-
nomials u(x), v(x) that satisfy equation (1). Finally, we will establish
that the k in equation (1) is indeed the smallest such positive integer,
thus concluding the proof of Theorem 2.

Lemma 5. For m < n positive integers with m | n, let

_(q)n/m(xm) - q)n/m(l)) o (bn/m(xm).

1= w0 YT W

Then, u(x) and v(x) are both in Z[x], and

: T +
B (2)u(x) + B (2)0(x) = {p if n/m.— p" for somer € ZT,
1 otherwise.
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Proof. By direct substitution, we note that ®,, (z)u(z)+®, (x)v(z) =
®,,/m(1), and we appeal to Lemma 4 to establish the desired equality.
We use Lemma 3 to show that v(z) is in Z[z] and, as for u(z), we write

it as
D, (x) xm —1 '
Now, ®,,(z) divides ™ — 1, and since x — 1 divides f(z)— f(1) for any

polynomial f(z), then by substituting ™ for x, we have that 2™ — 1
divides f(z™) — f(1). We can conclude that u(x) € Z[z]. o

Lemma 6. Form < n positive integers with m { n, let d = ged(m,n),
and let s,t be positive integers such that ns —mt = d. If we now define

) — (_xd)(xmt _ 1) () — s — 1
ST e A B )
then u(x) and v(x) are both in Z[zx], and

D (z)u(z) + &4 (z)v(2) = 1.

Proof. By direct substitution, we note that

_dermt + £L'd 4o — 1
P (z)u(x) + p(2)v(z) = 1 ;

d+mt _ "8

and, since ns — mt = d, then = , and the above fraction

cancels to 1.

We now show that our functions u(z) and v(z) are indeed in Z[z]. In
the case of u(z), we note that, since m { n, then d < m, and so ®,,(z)
is not a factor of z¢ — 1. However, both ®,,(x) and % — 1 are factors
of x™" — 1, so we can conclude that u(z) is in Z[z]. As for v(z), since
m < n, then d < n, and so ®,(x) is not a factor of ¢ — 1. However,
both @, (z) and 2¢ — 1 are factors of 2™ — 1, so we can conclude that
v(x) € Z[z]. O

We conclude with:
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Proof of Theorem 2. By Lemmas 5 and 6, we know that w(z) and
v(x) exist satisfying equation (1). It remains to show that k is indeed
the smallest such positive integer that can be so written. This is trivial
for k =1, so let us assume that n/m is a power of a prime. Suppose,
then, that n = p’a and m = p'a with 0 < i < j. (The case when
i = 0 is nearly identical, and will not be discussed further.) Let C be
a positive integer such that u(z),v(z) € Z[x] exist with

Diq()u(x) + Ppig(x)v(z) = C.

Let us show that p | C. By Lemma 3, we can write the above equation
as v .
P, (P P (z?

Lald®) ) 4 2el)

Dy (aP ™) Dy (aP™)

Now recall that f(zP) = f(«)P mod p, so the above equation simplifies
modp to

v(z) =C.

(I)a(x)ptpi_lu(x) + @a(m)pj 7”‘1_111(3:) = C mod p.

Since Z[z]/(p) is a UFD, we conclude that ®,(z) | C and so C =
0 mod p as desired. ]

Proof of Theorem 1. We now remind ourselves of some basic facts
about resultants, as seen in [1, 7] and others. Recall that the resultant
of two polynomials f(z) = fa™ + -+ fo and g(x) = gpx" + -+ -+ go
over an integral domain and with roots «;; and 3;, respectively, is given
by:

Res (f,9) = foon' | | (06— B;)-
4,
The author still considers it a minor miracle that the resultant is equal
to the determinant of the Sylvester matrix of f and g, as seen here:

S o
Jm o fo
Res (f,9) = f ol
gn e e go
gn .. .. go
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The following facts are easy consequences of the definition and the
matrix representation of the resultant.

Lemma 7. Let R be an integral domain. For f(zx),g(zx), h(x) € R[z],
then:

1. There ezist u(z),v(z) € R[z] such that f(z)u(z) + g(x)v(z) =
Res (f,9)-

2. Res(f,g) =0 if and only if f(x) and g(x) share a root with respect
to the algebraic closure of R.

3. Res (f,gh) = Res (f, g)Res (f, h).
4. For f or g of even degree, then Res (f,g) = Res (g, f).
5. Res(xz —a,g) = g(a) for a € R.

6. For f,g € Z[z] and [ with all non-real roots, then Res (f,g) is a
non-negative integer.

We provide an independent proof of the following theorem, first
proved (in greater generality) in [7]:

Theorem 8 [7]. For f,g non-constant polynomials, then Res (f(z?),
9(x')) = Res (f(x), g(x))".

Proof. For f and g of degrees m and n, respectively, consider the
following detail of the matrix representation of Res (f, g):

fm fm—l fm—2 o
Res (f(z),g(z) = | 0 fm  fm—1 fm—2

The above determinant has n rows of coefficients of f and m rows (not
shown) of coefficients of g. When we now consider f(z') and g(z'), we
realize that these polynomials will have the same coefficients as f(x)
and g(x) but separated by t — 1 zeros. This implies the following type
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of structure (here, I represents the ¢ by ¢ identity matrix):

fm 0 ... 0 fm—1 0
0 fm ... O 0 frmos
Res(f(a').g(@)=| 0 0 - fu 0 0
fm 0

fm'I fmfl'I

B fm'I

As the above detail suggests, we can think of Res (f(z'), g(z")) as the
determinant of a block matrix where the individual entries, or blocks,
are multiples of the ¢ by ¢ identity matrix I. It is a nice result of linear
algebra (see [4, 8]) that the determinant of a block matrix equals the
determinant of the original matrix, and a moment’s thought will lead
to the following expression for the determinant of the block matrix:

Res (f(2'),9(z")) = [Res (f,g) -I| = Res (f.9)". O

We now proceed with the proof of Theorem 1. The following lemmas
cover the two cases when n/m is and is not the power of a prime.

Lemma 9. Forn/m not the power of a prime, then Res (D, ®,,) = 1.

Proof. We know from the matrix representation that the resultant
is an integer. Suppose p divides the resultant, for p prime. Then, the
resultant is equivalent to 0 mod p, so ®,, and ®,, share a root over the
field Z/pZ. However, by Theorem 2, we know that u(x),v(x) € Z[z]
exist such that

D, (x)u(z) + @y (x)v(z) = 1.
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The above equation also holds over Z/pZ, which contradicts the exis-
tence of a common root for ®,, and ®,, over this field. Hence, no prime
divides the resultant, so the resultant is +1, and since one of m and n
must be at least 3, then either ®,, and ®,, has all non-real roots and
thus (by Lemma 7) the resultant is +1. O

Lemma 10. For p prime, p relati_velly prime to a and b, and © > 0,
then Res (@i, Pppi) = Res (Pq, Py )P (1)

Proof. If a = b, then Res (®,,®;) = Res (i, Pppi) = 0, so we can
safely assume that a and b are different. We proceed by induction on
i.

For ¢ > 1, then by Lemma 3, ®,,i(z) = ®ypi-1(2P) and like-
wise ®pi(x) = Pppi-1(2P). Thus, we have Res (P, (x), Pppi(x)) =
Res (®gpi-1(aP), @ppi-1(xP)), and by Theorem 8, this is Res (®pi-1 (),
Dppi—1(x))P.

For i = 1, we consider
Res (®q, Pp)” = Res (P (27), Pp(2?))
= Res (ap (7)o (), Pip()Ps(x))
= Res (Pgp, Pop) - Res (Pgp, Pp) - Res (Pg, Piyp)
-Res (@g, Dp).
Now, recall that we can assume that a and b are both different and
(by hypothesis) that they are relatively prime to p. This implies that
neither ap/b nor a/bp are powers of a single prime, and so by Lemma 9
we have Res (®qp, D) = Res (Pg, Prp) = 1. So, our previous equations
imply

Res (®q, @)’ = Res (Pgp, Ppp) - 1 -1 - Res (Pg, D),
and this implies that Res (@, Ppp) = Res (Pg, §p)P L. o

Corollary 11.  For c relatively prime to both a and b, then
Res ((I)ac; q)bc) = Res (@a, @b)¢(c) .

Proof. This follows by using Lemma 10 on all the primes p divid-
ing c. O
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Lemma 12. For n > m and n/m a power of a prime p, then
Res (®,,, ®,,) = p®(™).

Proof. We write n/m as p' for some positive i, and we consider
the options for m and n. First, suppose m = 1 (and thus n = p*).
Note that by part 5 of Lemma 7, Res(®1,®,:) = ®,i(1), which is

i—1

®,(17" ) = p = p®("™ as desired.
Next, suppose m = p (and thus n = p**!). Consider the following:

Res (®1, P, )P = Res (@1 (2?), @pi (2))
= Res (<I>p(x)<1>1 (J,‘), q)pi+1 (J,‘))
= Res (@p, @pi+1) - Res (@1, (I)p11+1),

and we can re-write both sides of this last equation as
pp = Res ((I)p, @pi+1) - P,

allowing us to conclude that Res (®,, ®,i+1) = pP~', which is p?(M) ag
desired.

We now ks_ulppose m :k_}lok. In this case, Res (®,» (xz,_?pi+k(x)) =
Res (®p(a? ), Ppir1(2P ) = Res(Pp(z), yit1(x))? -, which by
the above is (p”_l)pkf1 = p?("™) as desired.

Finally, suppose m = cp® for c relatively prime to p. Thus,
n = ¢p* and by Corollary 11 we have Res (® ., (), @ pitr (z)) =
Res (@, (2), @i+ ())?(9) which by the previous case becomes pPP9(©)
= p?(™) as desired. ]
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