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that is as easy as playing cards.
Let Vn denote the Vandermonde matrix with (i, j) entry vij = xj

i , for 0 ≤ i, j ≤ n. Since
the determinant of Vn is a polynomial in x0, x1, . . . , xn, it suffices to prove the identity for
positive integers x0 ≤ x1 ≤ · · · ≤ xn. We define a Vandermonde card to possess a suit and
a value, where a card of Suit i has a value from the set {1, . . . , xi}. (In our examples, we
will let Suits 0, 1, 2, 3, 4 be represented by suits �,♣,♦,♥,♠, respectively.) Hence there are
x0 + x1 + · · · + xn different Vandermonde cards, but we have at our disposal an unlimited
supply of each card to create Vandermonde tables described below. Now let’s do some card
counting.

Card Counting Question 1: How many ways can Vandermonde cards be arranged in
n+1 rows, where Row 0 is empty, Row 1 has one card of Suit 1, Row 2 has two cards of Suit
2, Row 3 has three cards of Suit 3, . . . , and Row n has n cards of Suit n? The order of the
cards is important and we are allowed to repeat values of cards within each row. We call such
an arrangement a Vandermonde table associated with the identity permutation π = 012 . . . n,
an example of which is given in Figure 1.

c11 ♣

c21 ♦ c22 ♦

c31 ♥ c32 ♥ c33 ♥

c41 ♠ c42 ♠ c43 ♠ c44 ♠

Row 0

Row 1

Row 2

Row 3

Row 4

Col 1 Col 2 Col 3 Col 4

c11 ∈ {1......x1}

c2j ∈ {1.........x2}

c3j ∈ {1............x3}

c4j ∈ {1...............x4}

permutation π

π(0) = 0 = �

π(1) = 1 = ♣

π(2) = 2 = ♦

π(3) = 3 = ♥

π(4) = 4 = ♠

Figure 1: A Vandermonde table associated with the identity permutation π = 01234 (or π = �♣♦♥♠). Each of the
i cards in Row i has Suit i and a value from {1, . . . , xi}. Such a table can be created x1x2

2x3
3x4

4 ways.

Answer: For 0 ≤ i ≤ n, the i cards in Row i all have Suit i, so their values can be
assigned xi

i ways. Hence, the number of arrangements is 1x1x
2
2x

3
3 · · ·xn

n, which is the product
of the diagonal entries of Vn.
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Card Counting Question 2: Same as Question 1, but now we are given a permutation
π of the numbers 0 through n, say π = a0a1 . . . an. Here, Row i must contain i cards from
Suit π(i) = ai. We call such an arrangement a Vandermonde table with permutation π. A
typical table is shown in Figure 2.

Answer: Counting row by row again, there are 1x1
π(1)x

2
π(2)x

3
π(3) · · ·x

n
π(n) such tables,

which is the product of the n + 1 entries of the form vπ(i),i from Vn.

c11 ♠

c21 � c22 �

c31 ♦ c32 ♦ c33 ♦

c41 ♣ c42 ♣ c43 ♣ c44 ♣

Row 0

Row 1

Row 2

Row 3

Row 4

Col 1 Col 2 Col 3 Col 4

c11 ∈ {1...............x4}

c2j ∈ {1...x0}

c3j ∈ {1.........x2}

c4j ∈ {1......x1}

permutation π

π(0) = 3 = ♥

π(1) = 4 = ♠

π(2) = 0 = �

π(3) = 2 = ♦

π(4) = 1 = ♣

Figure 2: A Vandermonde table associated with permutation π = 34021 (or π = ♥♠�♦♣). Each of the i cards in
Row i has Suit π(i) and a value from {1, . . . , xπ(i)}. Such a table can be created x4x2

0x3
2x4

1 ways.

Card Counting Question 3: Same as Question 2, but now π is not prescribed in
advance, so π can be any permutation of {0, . . . , n}. As before, each row is assigned a
different suit and each Row i contains i cards of the assigned suit. For this unrestricted
problem, such an arrangement is simply called a Vandermonde table.

Answer: Sum the answer to Question 2 over all possible permutations of 0, . . . , n. In
other words, the number of ways to create a Vandermonde table is the permanent of Vn.

Card Counting Question 4: Same as Question 3, but now we count those arrangements
with even permutations positively and those arrangements with odd permutations negatively.

Answer: By definition, this is the determinant of Vn.

It remains to show that the answer to Question 4 also equals
∏

0≤i<j≤n(xj − xi).
For a given Vandermonde table C, let the cards of Row i be denoted by Ci1, Ci2, . . . , Cii,

with values ci1, ci2, . . . , cii. We say that card Cij is small if cij ≤ xj−1. For example, any card
in Column 1 with a value less than or equal to x0 (such as any card of Suit 0) is small.

Card Counting Question 5: How many Vandermonde tables have no small cards?
Answer: Let C be a Vandermonde table with no small cards. Since Column 1 must not

contain any cards of Suit 0, Suit 0 must be assigned to the empty Row 0. To avoid small
cards in Column 2, card C11 must be given Suit 1 (since all cards of Suit 1 have value less
than or equal to x1), so Row 1 must be assigned Suit 1. By the same reasoning, Row 2 must
have Suit 2, . . . , and Row n must have Suit n. Thus C must be associated with the identity
permutation. Furthermore, to avoid small cards in the first column, the values of the cards
C11, . . . , Cn1 can be assigned (x1 − x0)(x2 − x0)(x3 − x0) · · · (xn − x0) ways. Likewise, the
values of the cards in the second column can be assigned (x2−x1)(x3−x1) · · · (xn−x1) ways,
and so on down to the single card of Suit n in the last column, with a value that can be
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assigned xn − xn−1 ways. Hence there are
∏

0≤i<j≤n(xj − xi) Vandermonde tables with no
small cards.

We say that a Vandermonde table is good if it has no small cards, and is bad if it has at
least one small card. Note that since the identity permutation is even, all of the good tables
are counted positively in the determinant of Vn.

To complete the proof of Vandermonde’s determinant, it suffices to show that every bad
Vandermonde table can be paired up with another bad Vandermonde table with a permuta-
tion of opposite parity. Thus, when the determinant of Vn sums over all Vandermonde tables,
the bad tables will cancel each other out. When the dust settles, only the good tables (all
counted positively) will remain standing.

Now let C be a bad Vandermonde table with permutation π = a0a1 . . . an. We define the
first small card of C to be the small card cij where j is as small as possible, and if Column
j has more than one small card then we choose i to be as large as possible. In other words,
we look for small cards from bottom to top, beginning in Column 1.

...

ck−1,1 ♠ · · · · · · ck−1,k−1♠

ck1 ♥ ck2 ♥ · · · · · · ckk ♥

...

Row k − 1

Row k

Col 1 Col 2 · · · Col k − 1 Col k

RI RI

permutation π

...

π(k − 1) = ♠

π(k) = ♥

�
��

�

Figure 3: When the first small card occurs in the first column at card Ck1, simply swap the cards of Row k− 1 with
the cards Ck2, . . . , Ckk, and change the suit of card Ck1.

Suppose that the first small card of C occurs in Column 1, say card Ck1 for some 1 ≤
k ≤ n. Then, since Ck1 is small, ck1 ≤ x0 and since it is the first small card, there are no
small cards below it; that is, for i > k, ci1 > x0. For definiteness, suppose that the cards in
Row k− 1 have Suit π(k− 1) = ♠ and the cards in Row k have Suit π(k) = ♥. (We make no
assumptions about the suit number for hearts or spades.) Now consider the Vandermonde
table C ′ obtained by swapping all k − 1 spade cards with all of the heart cards except for
card Ck1. Then change the suit of card Ck1 from hearts to spades. The suit change from
hearts to spaces is legal since Ck1 has value ck1 ≤ x0, which is a legal value for all suits. (Here
we are exploiting the fact that x0 ≤ x1 ≤ · · · ≤ xn.) Notice that Ck1 is still the first small
card of C ′, albeit with a new suit, and thus if we apply the swapping procedure to C ′, we
obtain C. That is, (C ′)′ = C. Furthermore, C ′ has permutation π′ = a0a1 . . . akak−1 . . . an.
Permutations π and π′ have opposite parity since they differ by the transposition of hearts
and spades. See Figure 3.

Now suppose that the first small card of C occurs in Column j for some j ≥ 2, say at card
Ckj . Consequently, ckj ≤ xj−1, and there are no small cards anywhere in Columns 1 through
j− 1 nor below card Ckj in Column j. As before, suppose the cards of Row k have the heart
suit, and that the cards of Row k− 1 have the spade suit. Create a new Vandermonde table
C ′ by swapping the first j − 1 cards of Rows k − 1 and k, leaving card Ckj in its place, but
changing its suit from hearts to spades, then swapping the remaining k − j cards of Rows

3



k − 1 and k, as in Figure 4.
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ck−1,1 ♠ · · · ck−1,j−1♠ ck−1,j♠ · · · ck−1,k−1♠

ck1 ♥ · · · ck,j−1 ♥ ckj ♥ · · · · · · ckk ♥
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�
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Figure 4: When Ckj is the first small card, and j ≥ 2, then swap the first j − 1 cards of Row k − 1 with the first
j − 1 cards of Row k, change the suit of card Ckj , then swap the remaining cards of Rows k − 1 and k. In the new
Vandermonde table, card Ckj remains the first small card.

Why is it legal to change the suit of card Ckj from hearts to spades? Since Ckj was the
first small card, then the spade card Ck−1,j−1 is not small and therefore has a value strictly
greater than xj−2. Thus all spade cards can take on values less than or equal to xj−1. Since
Ckj is small, its value is at most xj−1, so changing it from hearts to spades is allowable.

As before, Ckj remains the first small card of C ′, so (C ′)′ = C and C ′ has permutation
π′, which has opposite parity of π since they differ by a transposition. Thus there is a 1-1
correspondence between the positively counted Vandermonde tables with small cards and the
negatively counted Vandermonde tables with small cards. Therefore the determinant of Vn

is the number of Vandermonde tables with no small cards, namely
∏

0≤i<j≤n(xj − xi), as
desired.

For another combinatorial proof of Vandermonde’s determinant, where the cancellation
occurs in the product instead of the sums, see the short paper by Ira Gessel [1].
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