
Three Transcendental Numbers From the Last

Non-Zero Digits of nn, Fn, and n!.

Gregory P. Dresden

Washington & Lee University

Lexington, VA 24450

dresdeng@wlu.edu

In this article, we will construct three infinite decimals from the last

nonzero digits of nn, Fn (the Fibonacci numbers), and n!, respectively, and

we will show that all three are transcendental. Along the way, we will learn a

bit about the history of transcendental numbers, discuss two major theorems

in the field, and pose some questions for future research. Let’s begin by

recalling what it means for a number to be transcendental.

Definition. For α a complex number, we say α is algebraic if it is the

root of a polynomial with integer coefficients. If no such polynomial exists,

we say that α is transcendental.

Early mathematicians, of course, were ignorant of this distinction. In-

deed, the Pythagoreans of ancient Greece believed that everything in the

universe could be measured by whole numbers and their ratios. It must have

come as quite a shock when Hippasus (fifth century b.c.e.) first demon-

strated that certain ratios, such as the ratio between the diagonal and the

side of a square, were not the ratios of two whole numbers. Legend has it

that angry Pythagoreans threw Hippasus into the sea for his heresy [9], but

the idea of irrational numbers lived on. Indeed, our word “irrational” dates

back to the Greek word αρρητoς (arrētos), meaning “unspeakable”, perhaps

reflecting the Greeks’ disgust of such messy objects as
√

2/1 [9], [15].

We now skip ahead to seventeenth-century Europe. With the introduction

of algebra and modern notation, it finally became possible to ask if there
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existed numbers that were not roots of polynomials. James Gregory [3],[8]

appears to have been the first to attempt to prove that π and e were not

algebraic, an ambitious (and ultimately fruitless) goal given that it was not

yet known if they were even irrational (their irrationality was finally shown

in the eighteenth century by Lambert and Euler, respectively).

It was not until the nineteenth century that we see the first proofs of the

existence of transcendental numbers. Liouville was the first to do so, with

the specially-constructed number

L =
∞∑

n=1

1

10n!
= 0.110001000000000000000001 . . .

The numbers π and e were shown to be transcendental by the later part

of the century by Lindemann and Hermite, respectively. Lindemann’s proof

finally put to rest the old problem of squaring the circle, first studied by the

Greeks over two millenia earlier. Lindemann later reported [12, p. 246] that

Kronecker said to him (probably in jest, and perhaps alluding to the ancient

Greeks’ distaste for irrational numbers), “Of what use is your beautiful in-

vestigation of π? Why study such problems since irrational numbers do not

exist?” Some have seen this as a demonstration that Kronecker believed only

in the existence of integers (recall also his famous quote “God created the

integers, all else is the work of man”), but it is clear from his work that this

is not the case. For a summary of the controversy over Kronecker’s words,

see the article by Edwards [5, Essay 5.5].

We note that even in the twenty-first century there are many open ques-

tions about transcendental numbers. It’s not known if ζ(3) is transcendental,

and as for the Euler constant γ, we do not yet know if it is even irrational. For

a further discussion of recent work on transcendental numbers, Ribenboim

in [13] provides an English summary of a 1983 historical overview by Wald-

schmidt [16]. See also Ribenboim’s extensive bibliography in [13, Chapter

10].
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Two Modern Theorems

It is possible to prove that certain numbers (such as π and e) are transcen-

dental by assuming them to be algebraic and then working towards a con-

tradiction. Such proofs are fairly complicated and involve a lot of auxiliary

polynomials [7], [2]. Fortunately, there exist several different characteriza-

tions of transcendental numbers that will prove to be much easier to work

with. This first theorem is the result of the work of three mathematicians over

the first half of the twentieth century; it is restated slightly for convenience.

Theorem 1 (Thue, Siegel, Roth). For α algebraic and ε > 0, then

there exist only finitely many rational numbers p/q such that∣∣∣∣α − p

q

∣∣∣∣ < 1

q2+ε
.

Thus, if we can show that for some fixed ε > 0 there are infinitely many

such numbers p/q that satisfy the above inequality, then α must be tran-

scendental. In contrast to Thue-Siegel-Roth, consider the following fairly

trivial result from Diophantine approximation [7], [11]: if we have α rational

and ε > 0 then there exist only finitely many many rational numbers p/q

such that
∣∣∣α − p

q

∣∣∣ < 1
q1+ε . Note also that both these results are best possible

in terms of the exponents. That is, if we replace the epsilons with zeros,

then there would actually be infinitely many p/q’s (found by continued frac-

tions) satisfying the first inequality and infinitely many p/q’s (for any q, take

p = bαqc) for the second inequality.

Our second theorem comes from an article just published in 2004, and it

is an extremely useful result. The following presentation is translated from

the original French and is simplified for convenience.

Theorem 2 (Adamczewski, Bugeaud, Luca). Let α be irrational,

and suppose there exist two sequences {Un}, {Vn} of finite words on {0, 1, . . . 9}
and a real number x > 1 such that
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(1) For every n ≥ 1, the word UnV
x
n is a prefix for α,

(2) The set
(
|Un|
|Vn|

)
n≥1

is bounded,

(3) The set |Vn| is strictly increasing.

Then, α is transcendental.

A few comments and definitions are in order. Recall that a finite word

W is simply a collection of digits, such as 411 or 314159. In saying that a

word W is a prefix for a number α we mean that α begins with the digits

from W . By |W | we mean the number of digits in W . For x an integer,

then W x is simply the word WW · · ·W (repeated x times), while if x is not

integral we define W x as being W bxc followed by the first d(x − bxc) · |W |e
elements of W . In particular, if W is 411, then W 1.5 would be 41141. Finally,

the original statement and proof of this theorem in [1] is slightly more general

in that it holds for α expressed in any base.

Both of these theorems give us new ways of identifying transcendental

numbers. The Thue-Siegel-Roth theorem requires us to find an extremely

close rational approximation, while the Adamczewski-Bugeaud-Luca theo-

rem relies on a pattern in the digits. Let us now move on to our three

transcendental numbers and see how we can apply these two theorems.

Forming numbers from the digits of nn

We begin by looking at the pattern formed from the last (i.e. unit) digit of

nn. Since

11 = 1, 22 = 4, 33 = 27, 44 = 256, 55 = 3125, · · ·

then if we take the last digit of each number and form a decimal, we get

0. 1476563690 1636567490

1476563690 1636567490 · · ·

4



This looks a lot like a repeating decimal, and indeed it is not hard to

prove (see [6]) that

nn ≡ (n + 20k)n+20k (mod 10)

which allows us to conclude that we have a rational number with period

20 equal to (1476563690 1636567490) / (9999999999 9999999999). Since

rational numbers are by definition not transcendental, we need to modify

our construction to produce a more interesting decimal.

With this in mind, let us now construct a new decimal number A =

0.d1d2d3 . . . dn . . . such that the nth digit dn of A is the last nonzero digit of

nn; that is,

A = 0. 1476563691 1636567496

1476563699 1636567496 · · ·

The reader will note that this new number A differs from the previous

number at the tenth decimal place, the twentieth, the thirtieth, and so on.

In a recent paper [4], we showed that this A is an irrational number (despite

“almost” having a period of twenty digits). We will now show that it is

transcendental.

To prove transcendence, we will be using the Thue-Siegel-Roth Theorem.

In particular, we will demonstrate the existence of an infinite sequence of

rational numbers pn/qn such that
∣∣∣A− pn

qn

∣∣∣ < 1
qn

2.1 .

Let’s begin by creating a sequence of irrational numbers A0 = A, A1, A2, . . .

such that each An is formed by replacing every digit in An−1 with zeros except

for every tenth nonzero digit (which will be left alone). This means that each

An has nonzero digits only every 10nth place, at 10−10n
, 10−2·10n

, 10−3·10n
, and

so on. Visually, this sequence looks like the following, where the dots repre-

sent zeros.

A0 = 0.1476563691 1636567496 1476563699 1636567496 · · ·
A1 = 0..........1 .........6 .........9 .........6 · · ·
A2 = 0........... .......... .......... .......... · · ·
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(The number A2 doesn’t have a nonzero digit until the one hundredth decimal

place, at 10−100.) If we remove the dots and condense these decimals a bit,

we see an interesting pattern develop (recall that the nonzero digits in An

are actually 10n decimal places apart; think of the spaces in A1, A2, etc. as

representing lots and lots of zeros)

A0 = 0.1476563691 · · ·
A1 = 0. 1 6 9 6 5 6 9 6 1 1 · · ·
A2 = 0. 1 6 1 6 5 6 1 6 1 1 · · ·
A3 = 0. 1 6 1 6 5 6 1 6 1 1 · · ·

A simple application of [4, Lemma 3] shows that for n ≥ 2, the sequences

of nonzero digits in each An are identical: 1, 6, 1, 6, 5, 6, 1, 6, 1, ∗, where ∗ is

either 1, 6, or 5 depending on the position. This implies that Rn = An−An+1

is rational for n ≥ 2; the cases n = 0 and n = 1 follow immediately from

Lemma 2 below. Since each Rn is rational, then if we can show that An is well

approximated by rationals (in the context of the Thue-Siegel-Roth theorem),

this might help us to approximate A as well. Let’s investigate these An’s a

bit further.

If we write out just the nonzero digits of An (with appropriate spacing)

An = 0. 1 6 1 6 5 6 1 6 1 1 · · · (for n ≥ 2)

we clearly see that each An (for n ≥ 2) is quite close to the rational number

sn

tn
= 0. 1 6 1 6 1 6 1 6 1 6 · · ·

Here, just as with An, these nonzero digits of sn/tn are actually 10n decimal

places apart. Thus,
sn

tn
is easily seen to be

1 · 1010n
+ 6

102·10n − 1
. Also, it is easy to

see that An and sn/tn differ in the fifth visible position (among other places),

which means that they differ by about
4

105·10n . As a result, we have∣∣∣∣An −
sn

tn

∣∣∣∣ ≈ 4

105·10n <
1

104.2·10n ≈ 1

tn
2.1
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(The attentive reader will notice that we could have easily replaced the 2.1

with 2.4 or even 2.49. However, 2.1 will work fine for our purposes.)

Let’s now relate this back to A. Recall that we have An+1 = An−Rn, and

it is easy to show that the rational number Rn has denominator 1010n+1 − 1

for n > 0 and denominator 1020 − 1 at n = 0. We define pn/qn as

pn

qn

=

(
n−1∑
i=0

Ri

)
+

sn

tn
.

The denominator qn is 102·10n
, the same as tn, because the denominator of

each Ri divides evenly into tn. Thus,∣∣∣∣A− pn

qn

∣∣∣∣ =

∣∣∣∣∣A−
n−1∑
i=0

Ri −
sn

tn

∣∣∣∣∣ =

∣∣∣∣An −
sn

tn

∣∣∣∣ ≈ 4

105·10n <
1

104.2·10n ≈ 1

tn
2.1

=
1

qn
2.1

The conditions of Theorem 1 being satisfied, we can conclude that A is

transcendental.

A Number from the Fibonacci Sequence

Let us look at a new decimal number, this one constructed from the Fibonacci

sequence Fn. It’s easy to show that Fn+60 ≡ Fn (mod 10), which means that

as in the case of nn, taking the last digit of each number would result in a

repeating decimal. Instead, we construct a decimal (call it B) from the last

nonzero digits. Since the Fibonacci numbers are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, · · ·

then we get

B = 0.112358314594371 774156178538194

998752796516737 336954932572912

112358314594375 774156178538192 · · ·

Our technique in proving that B is transcendental is the same as our proof

earlier with A (formed from the last nonzero digit of nn). We will construct
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a sequence of decimals B0 = B, B1, B2, each formed by selecting a few digits

from the previous number. Each Bn will be well approximated by a rational

number sn/tn, which will be used to create another rational number pn/qn.

Using Theorem 1 and these rational numbers pn/qn, we will be able to con-

clude that B is transcendental.

Let’s begin with B1, which will be formed from B0 by keeping every

fifteenth digit in B0, and replacing all the others with zeros.

B1 = 0...............1 ..............4

..............7 ..............2

..............5 ..............2 · · ·

We condense and continue B1 to get

B1 = 0. 1 4 7 2 5 2 3 4 9 2 9 6 3 8 5 8 7 6 1 6

1 4 7 2 5 2 3 4 9 6 9 6 3 8 5 8 7 6 1 2 · · ·

(digits are 15 decimal places apart, separated by a stream of 0’s).

Now define B2 to be every tenth nonzero digit of B1, with zeros elsewhere.

B2 = 0. 2 6 6 2 1 8 4 4 8 8

2 6 6 2 3 8 4 4 8 6 · · ·

(digits are 150 decimal places apart, separated by zeros).

Define B3 to be every fifth nonzero digit of B2.

B3 = 0. 1 8 3 6 5 4 7 2 9 9

1 8 3 6 5 4 7 2 9 8 · · ·

(digits are 750 decimal places apart).

Let B4 be every tenth nonzero digit of B3, and we will finally see a

beautiful pattern appear.

B4 = 0. 9 8 7 6 5 4 3 2 1 9

9 8 7 6 5 4 3 2 1 8 · · ·
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(digits are now 7500 decimal places apart).

If we define Bn (for n ≥ 4) to be every tenth nonzero digit of Bn−1, we

will always get (Lemma 4) the pattern

Bn = 0. 9 8 7 6 5 4 3 2 1 9

9 8 7 6 5 4 3 2 1 8 · · · (for n ≥ 4)

(digits are 75 · 10n−2 decimal places apart). Furthermore, these Bn’s have

all been chosen such that they differ from their predecessors by a rational

number; that is, if we define Rn = Bn+1 −Bn, then Rn is rational.

Consider the rational number
sn

tn
=

9 · 1075·10n−2 − 10

(1075·10n−2 − 1)2
. Writing out the

first few nonzero digits, we find that this rational number is
sn

tn
= 0. 9 8 7 6 5 4 3 2 · · · .

After that 2, the decimal expansion becomes rather complicated, with most

of the zeros replaced by nines, and then some eights start to show up, but

that doesn’t really concern us. What’s important is that sn/tn is a good

approximation to Bn for quite a few decimal places; in fact, they are the

same up to the eighth nonzero digit. Thus, for n ≥ 4,∣∣∣∣Bn −
sn

tn

∣∣∣∣ < 1

108·(75·10n−2)
≈ 1

tn
4

Let’s now relate this back to B4. If we can show that B4 is transcendental,

then since B4 and B differ by a rational number, then B itself will also be

transcendental.

Recall that we have Bn+1 = Bn −Rn, and it is easy to show that Ri has

denominator 1075·10i−1 − 1 (for i ≥ 4). We now define pn/qn as

pn

qn

=

(
n−1∑
i=4

Ri

)
+

sn

tn
.

The denominator qn is (1075·10n−2 − 1)2, the same as tn, because the denomi-

nator of each Ri divides evenly into tn. Thus,∣∣∣∣B4 −
pn

qn

∣∣∣∣ =

∣∣∣∣∣B4 −
n−1∑
i=4

Ri −
sn

tn

∣∣∣∣∣ =

∣∣∣∣Bn −
sn

tn

∣∣∣∣ < 1

108·(75·10n−2)
≈ 1

tn
4
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Thus, by Theorem 1, B4 is transcendental, and hence so is B.

A Number from the Sequence n!

Finally, let us look at what we get from the last nonzero digit of n!. Starting

with

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, · · ·

we get

C = 0.1264 22428 88682 88682 44846 44846 88682 · · ·

It looks more appealing if we replace the first block of 1264 with 66264, and

continue out a few thousand digits. We then get the very nice pattern

C ′ = 0.66264 22428 88682 88682 44846 · · · (625 digits per line)

66264 22428 88682 88682 44846 · · ·
22428 44846 66264 66264 88682 · · ·
66264 22428 88682 88682 44846 · · ·
44846 88682 22428 22428 66264 · · ·

22428 44846 66264 66264 88682 · · ·
...

...
...

...
...

Note that C and C ′ are related by the linear formula C = 10C ′ − 6.5, so

if C ′ is identified as rational, algebraic, or transcendental, then the same

must hold for C itself. The number C ′ turns out to be much easier to work

with (notice the nice repetition in the first two lines, for example), and with

this in mind, let us define ` to represent the last nonzero digit with a slight

variation.

Definition. For n ≥ 0, define `(n) =

{
6 : n = 0, 1

lnzd(n!) : n ≥ 2.

10



In a previous paper [4], we proved that C (and thus C ′) is irrational.

Thanks to the new Adamczewski-Bugeaud-Luca theorem, we can now show

that it is transcendental. An important step in this direction is the following

formula for the decimal digits in C ′. Writing n in base-5 notation as n =∑N
i=0 ai5

i (for ai ∈ {0, 1, 2, 3, 4}), then `(n) = 6
∏N

i=0(ai!)2
i·ai mod 10 (see

Lemma 7). We can use this to explain why the first two lines in the expression

for C ′ are identical, and in fact we can go a bit further. The following lemma

gives the full story.

Lemma 1. For r a multiple of four, the first 5r digits of C ′ equal the

second 5r digits.

Proof. Let n be a positive integer less than 5r. We can write n =∑r−1
i=0 ai5

i, and thus n+5r =
∑r−1

i=0 (ai5
i)+1 ·5r. So, by our formula for `(n),

we have `(n + 5r) = `(n) · (1!)2r·1 mod 10. Since r is a multiple of 4, then

2r ≡ 6 mod 10, and recalling that 6 acts as an identity on the set {2, 4, 6, 8}
under multiplication mod 10, we have `(n + 5r) = `(n).

We now use this lemma to immediately prove the transcendence of the

irrational number C ′. In the notation of the Adamczewski-Bugeaud-Luca

theorem, let Un = {}, let Vn be the first 54n digits of C ′, and let x = 2. All

three criteria of Theorem 2 having been satisfied, we conclude that C ′, and

hence C, is transcendental.

Proofs

The following technical lemmas are used in the paper.

Lemma 2. For n not divisible by 100, then

lnzd(nn) = lnzd((n + 100)n+100).
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Proof. We first note that if 100 /|n then lnzd(n) = lnzd(n + 100). Also,

lnzd(ab) = lnzd(a)b mod 10 for all a, b > 0. This allows us to state that

lnzd((n + 100)n+100) = lnzd(n + 100)n+100 mod 10 = lnzd(n)n+100 mod 10,

so the lemma reduces to proving that lnzd(n)n+100 ≡ lnzd(n)n mod 10. This

is clearly true for lnzd(n) = 5. If lnzd(n) = 1, 3, 7, or 9, then since each

of these raised to the fourth power gives 1 mod 10, we have lnzd(n)n+100 ≡
lnzd(n)n · 125 = lnzd(n)n. If on the other hand lnzd(n) = 2, 4, 6, or 8, then

since each of these gives 6 when raised to the fourth power mod 10, we have

lnzd(n)n+100 ≡ lnzd(n)n · 625 ≡ lnzd(n)n · 6. Now, lnzd(n) is even, and 6

acts as a multiplicative identity on even numbers mod 10, so we end up with

lnzd(n)n, as desired.

Lemma 3. For n = 7500 · 10k, k ≥ 0, then lnzd(Fn) = 9.

Proof. This is certainly true for k = 0, by inspection. For k > 0 we use

induction and the identity [18, Formula 42]

F10n = Fn

[(
9

0

)
Ln

9 −
(

8

1

)
Ln

7 +

(
7

2

)
Ln

5 −
(

6

3

)
Ln

3 +

(
5

4

)
Ln

]
.

Assume that n is as given and that lnzd(Fn) = 9. By observation, the Lucas

numbers mod 100 have period 60; since 60|7500, this implies that Ln ≡ 2

mod 100. An application of [14, Theorems 6 and 7] and [17] gives that Fn

ends in exactly k + 4 zeros, and F10n in k + 5 zeros. With all this in mind,

we write the above formula as(
F10n

10k+4
mod 100

)
=

(
Fn

10k+4
mod 100

)
·
[
29 − 8 · 27 + 21 · 25 − 20 · 23 + 5 · 2

]
mod 100

=

(
Fn

10k+4
mod 100

)
[10] mod 100 = 90.

This implies that lnzd(F10n) = 9, as desired.

Lemma 4. For n = 7500 · 10k, k ≥ 0, and 1 ≤ i ≤ 9, then lnzd(Fin) =

10− i.
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Proof. The case i = 1 is covered by Lemma 3. For i = 2 we apply the

formula F2n = FnLn and the fact (mentioned in Lemma 3) that lnzd(Ln) = 2.

The other cases proceed by induction and the formula Fin = F(i−1)nLn −
F(i−2)n from [10, p. 92].

Lemma 5. For k not a multiple of 5 and for b ≥ 0, then `(5bk) =

8bk · `(5bk − 1).

Proof. `(5bk) = lnzd(5bk!) = lnzd((5bk − 1)! · 5bk). It’s easy to show that

2b+1|(5bk − 1)!, so we can write this last expression as lnzd((5bk − 1)!2−b ·
10bk) = lnzd((5bk−1)!2−b·6b·10bk) because 6 acts as the identity on {2, 4, 6, 8}
under multiplication mod 10. Replacing 6b with 2b8b, cancelling the 2’s and

moving the 8’s outside, we get 8b · lnzd((5bk − 1)!k) mod 10, which gives us

8bk · `(5bk − 1) mod 10.

Lemma 6. For k ≥ 1 not a multiple of 5 and for c ≥ 1, then

(1) `(5bk) = 2bk · `(5b(k − 1)) mod 10.

(2) `(5b(5c− 1)) = 4 · `(5b+1(c− 1)) mod 10.

Proof. For b = 0, the first statement is trivial and the second follows

from applying Lemma 5 four times. We now assume that (1) and (2) hold

for b < a, and attempt to prove them for b = a. For the first,

`(5ak) = 8ak · `(5ak − 1) (by Lemma 5)

= 8ak · 4 · `(5 · (5a−1k − 1))

= 8ak · 42 · `(52 · (5a−2k − 1))
...

= 8ak · 4a · `(5a · (k − 1))

= 2ak · `(5a · (k − 1))
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and for the second, `(5a(5c− 1) = 2a(5c− 1) · 2a(5c− 2) · 2a(5c− 3) · 2a(5c−
4) · `(5a(5c− 5)) by applying (1) four times, and after simplifying mod 10 we

get 4`(5a(5c− 5)), which is 4 · `(5b+1(c− 1)).

Lemma 7. For n =
∑N

i=0 ai5
i, then `(n) = 6

∏N
i=0(ai!)2

i·ai mod 10.

Proof. Suppose 5i0 is the largest power of 5 dividing n. We can thus

write n = 5i0(m + ai0) for m some integer multiple of 5. Applying part (1)

of Lemma 6 ai0 times, we get `(n) = 2i0ai0 (ai0 !)`(5
i0m). We now repeat the

process with n replaced by 5i0m = n−ai05
i0 (and so on) to eventually arrive

at the desired formula.

For Further Study

For those interested in the history of mathematics, Morris Kline’s book [9]

is an excellent resource. One also shouldn’t ignore Kurt von Fritz’s article

[15], which gives a delightful discussion of how in the fifth century b.c.e.

Hippasus might have discovered irrational numbers by using a pentagon,

thus suggesting that the first irrational number could have been the golden

ratio, (1 +
√

5)/2. Of course, the golden ratio is also the limit of the ratio of

successive Fibonacci numbers, which brings us back to one of the subjects of

this article.

For those interested in creating more transcendental numbers like the

three given in this article, a good place to start might be with other famous

sequences such as the squares or the triangular numbers. Euler and Sadek

[6] suggest looking at the last digit of the primes p, or perhaps of pp. If one

wishes more sequences to study, there are well over a hundred thousand of

them at N. J. A. Sloane’s On-Line Encyclopedia of Integer Sequences

(http://www.research.att.com/~njas/sequences/).

Finally, J. Siehler suggested looking at algebraic numbers. Is there a way

to recognize or to perhaps write down a decimal expansion for an algebraic
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number, using a theorem similar to the two theorems of this paper? What

would such a number look like? It might be easy to prove such a number is

algebraic yet hard to actually find its minimal polynomial!
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