On the Middle Coefficient of a Cyclotomic Polynomial

Gregory P. Dresden

The cyclotomic polynomials Φ_{n} for $n=1,2,3, \ldots$ (familiar to every student of algebra) are the minimal polynomials for the primitive nth roots of unity:

$$
\Phi_{n}(x)=\prod_{(k, n)=1}\left(x-e^{2 \pi i k / n}\right)
$$

Clearly Φ_{n} has degree $\phi(n)$, where ϕ signifies Euler's totient function. These monic polynomials can be defined recursively as $\Phi_{1}(x)=x-1$ and $\prod_{i \mid n} \Phi_{i}(x)=x^{n}-1$ for $n>1$. The first few are easily calculated to be $x-1, x+1, x^{2}+x+1, x^{2}+1, \ldots$. For these and other basic facts, see an algebra text such as [5].

While it might appear that the coefficients of the cyclotomic polynomials are always ± 1, the presence of $2 x^{7}$ in $\Phi_{105}(x)$ shows that this is not invariably the case (and indeed is a good counterexample for those students who insist that the "law of small numbers" is universally valid; see [4] for further discussion). Naturally, much work has been done on the values of the coefficients of $\Phi_{n}(x)$. One amazing fact worthy of mention is that every integer appears as a coefficient in some cyclotomic polynomial (see [1], [8]).

In this article, we provide a short and elementary proof of the following result:
Theorem 1. For $n \geq 3$ the middle coefficient of $\Phi_{n}(x)$ is either zero (when n is a power of 2) or an odd integer.

A similar result can be found in [6], where Lam and Leung directly calculate the middle coefficient of $\Phi_{p q}(x)$ for distinct primes p and q and show it to be ± 1. This had been done earlier by Beiter [2] for the case of distinct odd primes. Both papers rely on the partition of $\phi(p q) / 2$ into $r p+s q$. In contrast, our proof uses only some very basic facts about minimal polynomials. We also point out that for $n \neq p q$ the polynomial $\Phi_{n}(x)$ could indeed have a middle coefficient different from 1 or -1 . The first such occurence is at $n=385$ (giving a middle coefficient of -3), after which one sees 5 at $n=4785$, followed by -7 at $n=7735$, and 19 at $n=11305$. All these values of n are square-free products of small odd primes, which is alluded to in [8].

Before proceeding with the proof of Theorem 1, we do a bit of preliminary work. The first lemma establishes a useful fact about $\Phi_{n}(x)$.

Lemma 1. If $n \geq 3$ and n is odd, then $\Phi_{n}(-1)=1$.
Proof. For $n \geq 3$,

$$
\prod_{i \mid n, i>1} \Phi_{i}(x)=\frac{x^{n}-1}{x-1}
$$

so (since n is odd)

$$
\prod_{i \mid n, i>1} \Phi_{i}(-1)=\frac{(-1)^{n}-1}{(-1)-1}=1
$$

Also, $\Phi_{3}(-1)=1$. By a simple induction argument we conclude that $\Phi_{n}(-1)=1$ whenever n is at least three and odd.

Next we review some basic information. We use ζ_{n} to signify a primitive nth root of unity (that is, $\zeta_{n}=e^{2 \pi i k / n}$ for some k relatively prime to n), and $f_{n}(x)$ to denote the minimal polynomial of $\zeta_{n}+\zeta_{n}^{-1}$ (recall that the minimal polynomial of an algebraic complex number α is the monic polynomial $p(x)$ in $\mathbb{Q}[x]$ of smallest degree such that $p(\alpha)=0$). It is not hard to show using elementary methods (see [7]) that f_{n} has integer coefficients and that when $n \geq 3$ the degree of f_{n} is half that of $\Phi_{n}(x)$. In fact,

$$
\begin{equation*}
\Phi_{n}(x)=f_{n}\left(x+x^{-1}\right) \cdot x^{\phi(n) / 2} \quad(n \geq 3) \tag{1}
\end{equation*}
$$

because (after simplifying the right-hand side) the polynomials on both sides of (1) are monic, are of degree $\phi(n)$, and have ζ_{n} as a root. The first few such polynomials f_{n} (for $n \geq 3$) are easy to derive from (1) and read as follows:

$$
\begin{array}{lll}
f_{3}(x)=x+1, & f_{5}(x)=x^{2}+x-1, & f_{7}(x)=x^{3}+x^{2}-2 x-1, \\
f_{4}(x)=x, & f_{6}(x)=x-1, & f_{8}(x)=x^{2}-2 .
\end{array}
$$

From this, we see that the constant term in f_{n} is not always ± 1 (equivalently, $\zeta_{n}+\zeta_{n}^{-1}$ is not necessarily an algebraic unit, meaning a unit in the ring of algebraic integers). However, by doing a careful comparison of the f_{n} with the Chebyshev polynomials, Carlitz and Thomas [3] showed that when $n \geq 3$ and n is not divisible by 4, the constant term in $f_{n}(x)$ is either 1 or -1 . For the sake of completeness, we provide a nonelementary, but much shorter, proof of this fact.

Lemma 2. If $n \geq 3$ and $n \not \equiv 0(\bmod 4)$, then $\zeta_{n}+\zeta_{n}^{-1}$ is an algebraic unit.
Proof. Let $m=n$ for n odd and $m=n / 2$ for n even. Note that m is itself odd and $m \geq 3$. Note as well that $\zeta_{n}{ }^{2}$ is a primitive m th root of unity (and thus a root of $\Phi_{m}(x)$). Then $\zeta_{n}^{2}+1$ is a root of $\Phi_{m}(x-1)$, which is a monic polynomial with constant term $\Phi_{m}(-1)=1$ (by Lemma 1). It follows that $\zeta_{n}{ }^{2}+1$ is an algebraic unit, as is ζ_{n}. Thus, $\zeta_{n}+\zeta_{n}^{-1}=\left(\zeta_{n}{ }^{2}+1\right) / \zeta_{n}$ is likewise an algebraic unit.

We are now ready to bring everything together.
Proof of Theorem 1. If $n=2^{k}$, then $\Phi_{n}(x)=x^{2^{k-1}}+1$, a polynomial with zero as its middle coefficient. We proceed assuming that n is not a power of 2 .

Note that if ζ is a primitive $4 k$ th root of unity, then ζ^{2} is a primitive $2 k$ th root of unity. Since $\phi(4 k)=2 \phi(2 k)$, we know that $\Phi_{4 k}(x)=\Phi_{2 k}\left(x^{2}\right)$. Since the middle coefficient of $\Phi_{2 k}\left(x^{2}\right)$ is the same as that of $\Phi_{2 k}(x)$, we can further assume without loss of generality that 4 does not divide n.

Now letting $f_{n}(x)$ be the minimal polynomial of $\zeta_{n}+\zeta_{n}^{-1}$, we know from Lemma 2 that f_{n} has constant coefficient ± 1. Thus, we can write $f_{n}(x)=x^{k}+a_{k-1} x^{k-1}+\cdots+$ $a_{1} x \pm 1$ (for $k=\phi(n) / 2$), and so from equation (1) we obtain

$$
\begin{equation*}
\Phi_{n}(x)=\left[\left(x+x^{-1}\right)^{k}+a_{k-1}\left(x+x^{-1}\right)^{k-1}+\cdots \pm 1\right] \cdot x^{k} . \tag{2}
\end{equation*}
$$

The middle coefficient of $\Phi_{n}(x)$ is the coefficient of the x^{k} term in (2) (recall, $k=\phi(n) / 2$). This number is simply the sum of the constant terms appearing in each expression $a_{i}\left(x+x^{-1}\right)^{i}$ in (2), plus the final ± 1. The constant term in $a_{i}\left(x+x^{-1}\right)^{i}$
is either zero (for i odd) or $a_{i}\binom{i}{i / 2}$ (for i even). As a result, the middle coefficient of $\Phi_{n}(x)$ is

$$
\begin{equation*}
\sum_{i=2 j} a_{i}\binom{i}{i / 2} \pm 1=\sum_{j} a_{2 j}\binom{2 j}{j} \pm 1 \tag{3}
\end{equation*}
$$

By a familiar identity,

$$
\binom{2 j}{j}=\binom{2 j-1}{j-1}+\binom{2 j-1}{j}=2\binom{2 j-1}{j}
$$

Thus the middle coefficient of $\Phi_{n}(x)$ is odd when n is not a power of 2 .

REFERENCES

1. S. D. Adhikari, S. A. Katre, and D. Thakur, eds., Cyclotomic Fields and Related Topics, Bhaskaracharya Pratishthana, Pune, 2000.
2. M. Beiter, The midterm coefficient of the cyclotomic polynomial $F_{p q}(x)$, this MONTHLY 71 (1964) 769770.
3. L. Carlitz and J. M. Thomas, Rational tabulated values of trigonometric functions, this Monthly 69 (1962) 789-793.
4. R. K. Guy, The strong law of small numbers, this Monthly 95 (1988) 697-712.
5. T. W. Hungerford, Algebra, Springer-Verlag, New York, 1980.
6. T. Y. Lam and K. H. Leung, On the cyclotomic polynomial $\Phi_{p q}(X)$, this Monthly 103 (1996) 562-564.
7. D. H. Lehmer, A note on trigonometric algebraic numbers, this MONTHLY 40 (1933) 165-166.
8. J. Suzuki, On coefficients of cyclotomic polynomials, Proc. Japan Acad. Ser. A Math. Sci. 63 (1987) 279-280.

Department of Mathematics, Robinson Hall, Washington and Lee University, Lexington, VA 24450 dresdeng@wlu.edu

