
On the Middle Coefficient of a
Cyclotomic Polynomial

Gregory P. Dresden

The cyclotomic polynomials �n for n = 1, 2, 3, . . . (familiar to every student of alge-
bra) are the minimal polynomials for the primitive nth roots of unity:

�n(x) =
∏

(k,n)=1

(
x − e2π ik/n

)
.

Clearly �n has degree φ(n), where φ signifies Euler’s totient function. These monic
polynomials can be defined recursively as �1(x) = x − 1 and

∏
i |n �i(x) = xn − 1 for

n > 1. The first few are easily calculated to be x − 1, x + 1, x2 + x + 1, x2 + 1, . . . .

For these and other basic facts, see an algebra text such as [5].
While it might appear that the coefficients of the cyclotomic polynomials are always

±1, the presence of 2x7 in �105(x) shows that this is not invariably the case (and
indeed is a good counterexample for those students who insist that the “law of small
numbers” is universally valid; see [4] for further discussion). Naturally, much work
has been done on the values of the coefficients of �n(x). One amazing fact worthy of
mention is that every integer appears as a coefficient in some cyclotomic polynomial
(see [1], [8]).

In this article, we provide a short and elementary proof of the following result:

Theorem 1. For n ≥ 3 the middle coefficient of �n(x) is either zero (when n is a
power of 2) or an odd integer.

A similar result can be found in [6], where Lam and Leung directly calculate the
middle coefficient of �pq(x) for distinct primes p and q and show it to be ±1. This
had been done earlier by Beiter [2] for the case of distinct odd primes. Both papers
rely on the partition of φ(pq)/2 into rp + sq. In contrast, our proof uses only some
very basic facts about minimal polynomials. We also point out that for n �= pq the
polynomial �n(x) could indeed have a middle coefficient different from 1 or −1. The
first such occurence is at n = 385 (giving a middle coefficient of −3), after which
one sees 5 at n = 4785, followed by −7 at n = 7735, and 19 at n = 11305. All these
values of n are square-free products of small odd primes, which is alluded to in [8].

Before proceeding with the proof of Theorem 1, we do a bit of preliminary work.
The first lemma establishes a useful fact about �n(x).

Lemma 1. If n ≥ 3 and n is odd, then �n(−1) = 1.

Proof. For n ≥ 3,

∏
i |n,i>1

�i(x) = xn − 1

x − 1
,

so (since n is odd)

∏
i |n,i>1

�i(−1) = (−1)n − 1

(−1) − 1
= 1.
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Also, �3(−1) = 1. By a simple induction argument we conclude that �n(−1) = 1
whenever n is at least three and odd.

Next we review some basic information. We use ζn to signify a primitive nth root
of unity (that is, ζn = e2π ik/n for some k relatively prime to n), and fn(x) to denote the
minimal polynomial of ζn + ζ−1

n (recall that the minimal polynomial of an algebraic
complex number α is the monic polynomial p(x) in Q[x] of smallest degree such that
p(α) = 0). It is not hard to show using elementary methods (see [7]) that fn has integer
coefficients and that when n ≥ 3 the degree of fn is half that of �n(x). In fact,

�n(x) = fn(x + x−1) · xφ(n)/2 (n ≥ 3), (1)

because (after simplifying the right-hand side) the polynomials on both sides of (1) are
monic, are of degree φ(n), and have ζn as a root. The first few such polynomials fn

(for n ≥ 3) are easy to derive from (1) and read as follows:

f3(x) = x + 1, f5(x) = x2 + x − 1, f7(x) = x3 + x2 − 2x − 1,

f4(x) = x, f6(x) = x − 1, f8(x) = x2 − 2.

From this, we see that the constant term in fn is not always ±1 (equivalently,
ζn + ζ−1

n is not necessarily an algebraic unit, meaning a unit in the ring of algebraic
integers). However, by doing a careful comparison of the fn with the Chebyshev poly-
nomials, Carlitz and Thomas [3] showed that when n ≥ 3 and n is not divisible by 4,
the constant term in fn(x) is either 1 or −1. For the sake of completeness, we provide
a nonelementary, but much shorter, proof of this fact.

Lemma 2. If n ≥ 3 and n �≡ 0(mod 4), then ζn + ζ−1
n is an algebraic unit.

Proof. Let m = n for n odd and m = n/2 for n even. Note that m is itself odd and
m ≥ 3. Note as well that ζn

2 is a primitive mth root of unity (and thus a root of �m(x)).
Then ζn

2 + 1 is a root of �m(x − 1), which is a monic polynomial with constant term
�m(−1) = 1 (by Lemma 1). It follows that ζn

2 + 1 is an algebraic unit, as is ζn . Thus,
ζn + ζ−1

n = (ζn
2 + 1)/ζn is likewise an algebraic unit.

We are now ready to bring everything together.

Proof of Theorem 1. If n = 2k , then �n(x) = x2k−1 + 1, a polynomial with zero as its
middle coefficient. We proceed assuming that n is not a power of 2.

Note that if ζ is a primitive 4kth root of unity, then ζ 2 is a primitive 2kth root
of unity. Since φ(4k) = 2φ(2k), we know that �4k(x) = �2k(x2). Since the middle
coefficient of �2k(x2) is the same as that of �2k(x), we can further assume without
loss of generality that 4 does not divide n.

Now letting fn(x) be the minimal polynomial of ζn + ζ−1
n , we know from Lemma 2

that fn has constant coefficient ±1. Thus, we can write fn(x) = xk + ak−1xk−1 + · · · +
a1x ± 1 (for k = φ(n)/2), and so from equation (1) we obtain

�n(x) = [
(x + x−1)k + ak−1(x + x−1)k−1 + · · · ± 1

] · xk . (2)

The middle coefficient of �n(x) is the coefficient of the xk term in (2) (recall,
k = φ(n)/2). This number is simply the sum of the constant terms appearing in each
expression ai (x + x−1)i in (2), plus the final ±1. The constant term in ai (x + x−1)i
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is either zero (for i odd) or ai

( i
i/2

)
(for i even). As a result, the middle coefficient of

�n(x) is

∑
i=2 j

ai

(
i

i/2

)
± 1 =

∑
j

a2 j

(
2 j

j

)
± 1. (3)

By a familiar identity,

(
2 j

j

)
=

(
2 j − 1

j − 1

)
+

(
2 j − 1

j

)
= 2

(
2 j − 1

j

)
.

Thus the middle coefficient of �n(x) is odd when n is not a power of 2.
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