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An introduction to fractional linear transformations A fractional linear transfor-
mation (also called a Möbius transformation) over C is a function of the form

m(x) = ax + b

cx + d
,

with ad − bc �= 0. Most of us first encountered these in our complex analysis class,
where we learned that such analytic functions map lines and circles to lines and circles
on the complex plane (see, for example, books by Fisher [3, p. 187] or Rudin [6,
p. 280]). In this note, we consider finite groups of fractional linear transformations
(where the group operation is composition). We will arrive at the interesting conclusion
that, provided we limit ourselves to integer coefficients, there are only nine such groups
up to isomorphism. (For real or complex coefficients, there are infinitely many such
groups, but we will get into that a little bit later.)

All of this material should be accessible to undergraduates; indeed, I’ve even had
my beginning calculus students play with these functions when learning about com-
positions and inverses. Students in abstract algebra might appreciate these groups of
functions as nice examples of cyclic and dihedral groups, and those interested in find-
ing appropriate research topics will find plenty of material here to explore.

Let’s examine our terms and definitions in a little more detail. By integer coeffi-
cients, of course, we mean that a, b, c, and d are all integers. Thus, we’re considering
functions of the form

m(x) = 2x + 3

4x + 5
or even p(x) = 5

6
x + 7,

since this can be written as

p(x) = 5x + 42

0x + 6
,

but we are not considering functions like q(x) = 5
6 (as here, ad − bc = 0). Let’s also

observe that the two fractional linear transformations

ax + b

cx + d
and

ar x + br

cr x + dr
(r �= 0)

are identical. With this in mind, we see that there is no need to concern ourselves
with fractional linear transformations with rational coefficients, as multiplying top
and bottom by a common denominator would give us an identical function with integer
coefficients (indeed, relatively-prime integer coefficients, if desired).
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As mentioned above, our proposed group operation is function composition, so that,
for

m(x) = 2x + 3

4x + 5
, say, and p(x) = 6x + 7

8x + 9
,

we will have occasion to form m ◦ p(x) = m(p(x)). It should be clear that these frac-
tional linear transformations really do form a group under composition; the identity is
e(x) = x and the inverse of

ax + b

cx + d
is

dx − b

−cx + a
,

for which the condition ad − bc �= 0 is required.
The composition of two fractional linear transformations is somewhat tedious to

compute. A nice short-cut is provided by the map

φ : ax + b

cx + d
�−→

[
a b
c d

]
.

It is surprising, but not to hard to check, that composition of functions corresponds
exactly to matrix multiplication. In fact, φ is an isomorphism from the group of frac-
tional linear transformations with integer coefficients to a group called PGL(2, Q), the
projective group of 2 × 2 matrices with rational entries. The word projective simply
means that the matrices [

a b
c d

]
and

[
ar br
cr dr

]
are considered identical. (This condition is needed if the inverse of[

a b
c d

]
is to be

[
d −b

−c a

]
.)

Thus, as with the fractional linear transformations, we need only consider matrices
with integer coefficients if we so desire.

The isomorphism φ makes it easy to compose functions; it’s much simpler to mul-
tiply the matrix

[ 2 3
4 5

]
by
[ 6 7

8 9

]
than to attempt to simplify

2
(

6x+7
8x+9

)+ 3

4
(

6x+7
8x+9

)+ 5
.

The isomorphism also gives us a shorthand for referring to our group of fractional
linear transformations with integer coefficients (which we will henceforth denote as
PGL(2, Q).)

As is common in complex analysis, we will occasionally have these fractional lin-
ear transformations operate on numbers in the extended complex plane Ĉ = C

⋃{∞}
(also called the Riemann sphere). This is easy to do if we agree that 1/0 = ∞, that
1/∞ = 0, and that other standard rules of arithmetic with ∞ apply (see Beardon [1,
p. 4] or Rudin [6, p. 279] for more). In particular, if

m(x) = ax + b

cx + d
,

let us agree that m(∞) = a/c and m(−d/c) = ∞ (but note that if c = 0 then both
these equations read as m(∞) = ∞).
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A few special groups Let us define two types of (multiplicative) groups that will
prove to be quite important to us. The cyclic group Cn of size n can be thought of
as the set Cn = {e, a, a2, a3, · · · an−1} such that ai · a j = ai+ j mod n and an = a0 = e.
The dihedral group Dn is a bit more complicated; we write Dn = {e, a, a2, · · · an−1,

b, ab, a2b, · · · an−1b}. The as behave as before, but we now have b2 = e and ba =
an−1b (equivalently, b = b−1 and b−1ab = a−1). See Gallian’s book [4, p. 442] for
further discussion. Note that D1 is simply {e, b} and thus is isomorphic to C2. The
group D2 = {e, a, b, ab} is the smallest noncyclic group, and is often referred to as
the Klein four-group. (The terms D1 and D2 are not standard nomenclature for these
small groups, but they do help to simplify our notation.)

Cn and Dn can also be thought of as symmetry groups for certain geometric objects;
indeed, for n ≥ 3, Cn and Dn are isomorphic to the group of symmetries in R3 of a
regular pyramid and regular prism, respectively, with regular n-gons for bases. Since
these pyramids and prisms can each be inscribed within a sphere, we see that Cn and
Dn can be thought of as a symmetry group for a sphere as well. A classical result [8,
p. 40] states that the only finite symmetry groups of the sphere are Cn, Dn, A4, S4, and
A5 (where An and Sn represent the alternating and the symmetric groups on n letters).
See also Toth’s book [10, chapter 17] for a discussion of A4, S4, and A5 as symmetry
groups for the five platonic solids.

The cyclic groups Cn and the dihedral groups Dn also have a natural interpretation
as symmetries of regular n-gons in the plane. Here, Cn is the group of pure rotations
of an n-gon about its center, and Dn is the group of such rotations, along with the
reflections about axes of symmetries (dihedral groups refer to the “two sides” of the
polygon). Although these interpretations are well known and of interest in their own
right, we are mostly concerned here with regarding these groups as symmetries of
appropriate polyhedra in three dimensions.

Groups of fractional linear transformations under composition Let us consider
examples to see how certain sets of these fractional linear transformations can form
groups under composition. First, for p(x) = 1/(x + 1), then we have p(p(x)) (also
written p ◦ p(x) or p(2)(x)) equals (x + 1)/(x + 2), and p(3), p(4), and p(5) are

x + 2

2x + 3
,

2x + 3

3x + 5
, and

3x + 5

5x + 8
,

respectively. Are you surprised to see the Fibonacci numbers appearing as coefficients?
Note that p(x) corresponds to the matrix[

0 1
1 1

]
=
[

f0 f1

f1 f2

]
in PGL(2, Q), where fi is the i th Fibonacci number. It is well known that this matrix
generates the Fibonacci sequence: Its nth power is[

fn−1 fn

fn fn+1

]
.

Let us define p(0) to be the the identity map p(0)(x) = x , and note that the inverse of
p(x) is clearly p(−1)(x) = (−x + 1)/x . Thus, the set {p(i)(x) : i ∈ Z} under compo-
sition forms an (infinite) group, isomorphic to Z. A nice way to visualize the behavior
of this group is to observe the orbit of a particular number (say, 1) under repeated
iterations of p (and p−1):

- - - - -p p p p p� � � � � �
p−1 p−1 p−1 p−1 p−1 p−1· · · − 3

2 −2 −1 ∞ 0 1 1
2

2
3

3
5

5
8 · · ·
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Again, we notice the appearance of the Fibonacci numbers, this time in the numerators
and denominators of the terms in the orbit (the set of images of 1).

Next, for the similar function m(x) = −1/(x + 1), we find that m(2)(x) equals
(−x − 1)/x and m(3)(x) = x , the identity function. We say that m has order three
under composition, and so m(x) generates a finite group (isomorphic to C3, the cyclic
group of three elements). The following diagram shows the orbit of 2 under iteration
by m:

�
��� A

AAU
�

m m

m− 3
2

2

− 1
3

Finally, consider q(x) = 1/x . Since q(2)(x) is the identity, q generates a group of
order two. Of greater interest is the group generated by q and m together; these satisfy
the relation q ◦ m = m2 ◦ q, and so they generate a group of size six, isomorphic to
the dihedral group D3. The following picture illustrates a typical orbit under the group
generated by q(x):
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This is the structure we are interested in: a set of fractional linear transformations,
with integer coefficients, that forms a finite group under composition.

The nine finite groups Recall from our earlier discussion that PGL(2, Q) represents
the group of fractional linear transformations (ax + b)/(cx + d) with integer coeffi-
cients such that ad − bc �= 0. The following theorem gives our main result:

THEOREM 1. All finite subgroups of PGL(2, Q) are isomorphic to Cn or Dn for
n = 1, 2, 3, 4, or 6.

Since D1 = C2, we see that there are actually just nine groups, as mentioned in the
title. However, if we allow real coefficients in our fractional linear transformations
(equivalently, real entries in our projective matrices), we can extend the list of possible
finite groups:

THEOREM 2. Every finite subgroup of PGL(2, R) is either cyclic or dihedral, and
there exist such subgroups of arbitrary order.

Our proofs are constructive; see Corollary 1 for an explicit example of an element
of PGL(2, R) of arbitrary finite order under composition.

We’ve generalized from rational to real coefficients; what happens if we allow
complex coefficients? Here we refer to a well-known result: any finite group of frac-
tional linear transformations with complex coefficients (that is, a finite subgroup of
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PGL(2, C)) is isomorphic to a finite group of symmetries of the sphere [5], and hence
(as mentioned earlier) is isomorphic to a cyclic group Cn , a dihedral group Dn , or one
of the symmetry groups A4, S4, and A5 of the tetrahedron, cube, and icosahedron,
respectively [8]. However, our Theorem 2 indicates that it is impossible to repre-
sent A4, S4, and A5 using projective matrices

[ a b
c d

]
with real coefficients, since these

groups are neither cyclic nor dihedral.

Constructing fractional linear transformations of finite order For the moment,
let us allow complex coefficients, and let us consider how to construct fractional linear
transformations of small order. Clearly, e(x) = x has order 1 and m(x) = −x has
order 2 (under composition). It’s interesting to note, however, that −x + b also has
order 2, for b any complex number. For order 4, we might guess at i x or even i x + b,
and a moment’s work shows that these both work.

The coefficients 1, −1, and i are all primitive nth roots of unity for n = 1, 2, and 4
respectively. Recall that for n a positive integer, we call ζ a primitive nth root of unity
if ζ n = 1 and ζ k �= 1 for every 0 < k < n. Thus, ζ is a root of xn − 1, and for n > 1
it is also a root of the polynomial (xn − 1)/(x − 1) = xn−1 + · · · + x2 + x + 1. The
only rational roots of unity are ±1; the only quadratic roots are ±i and ±1/2 ± i

√
3/2

(of orders 3, 4, and 6). All other roots of unity are cubic, quartic, or of even higher
degree over the rationals [4, chapter 33]. For more information on field extensions and
on degrees of algebraic numbers over Q, see Gallian [4, chapters 20–21]. We note that
one must be careful not to confuse the order of a primitive root of unity with its degree
as an algebraic number over Q, nor should we confuse it with the order of a fractional
linear transformation under composition. These are all distinct concepts.

Based on our earlier work, we might suspect that the linear transformation m(x) =
ζ x + b (with ζ, b complex) will have order n under composition if and only if ζ is
a primitive nth root of unity. This is in fact the case, as can be seen by noticing that
m(n)(x) = ζ n x + b(ζ n−1 + · · · + ζ 2 + ζ + 1). Thus, if ζ is a primitive nth root of
unity, then m(x) has order n, and vice versa.

How do we now proceed to find arbitrary fractional linear transformations of fi-
nite order? As it turns out, we can show that any fractional linear transformation
(ax + b)/(cx + d) is conjugate to some linear map Ax + B, and we now know ex-
actly what is necessary for these linear maps to have finite order. (Recall that one
defines two elements α, β of a group G to be conjugate in G if there is some t ∈ G
such that β = t−1αt . It is easy to show that conjugate elements have the same order.)
Our first lemma is as follows:

LEMMA 1. Suppose

m(x) = ax + b

cx + d
,

with rational coefficients, ad − bc �= 0, has finite order under composition. Then,
m(x) has order 1, 2, 3, 4, or 6, and in the last three cases, m(x) is conjugate (in
PGL(2, Q)) to

−1

x + 1
,

x − 1

x + 1
, or

2x − 1

x + 1
,

respectively.

REMARK. The order-2 maps are not all conjugate in PGL(2, Q). In particular, for
p(x) = −4/x , then p(x) is not conjugate to q(x) = 1/x using only transformations
with rational coefficients. This can be seen by trying to find s(x) such that q = s−1 ◦
p ◦ s; after much calculation, we find that s(x) can only be ±2i x .
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Proof. It’s easy to verify that the three examples given in the lemma have order 3, 4,
and 6. Note also that q(x) = 1/x has order 2, and of course the identity map e(x) = x
has order 1.

We now show that 1, 2, 3, 4, and 6 are the only orders possible. Suppose that m(x)

is as above, with order n < ∞. If c = 0, then we can write m(x) = (a/d)x + b/d,
a linear map, and so by our earlier discussion, a/d = ±1 (the only rational roots of
unity) and m(x) has order n = 1 or n = 2. If c �= 0, we can solve the equation

ax + b

cx + d
= x

to get at least one finite fixed point α for m(x), of degree ≤ 2 over Q. We conjugate
m(x) with s(x) = α + 1/x to get m̂(x) = s−1 ◦ m ◦ s(x), a fractional linear transfor-
mation with coefficients in the (possibly quadratic) field Q(α). Since s takes ∞ to α

and m fixes α, then m̂(∞) = ∞, which implies m̂(x) is actually strictly linear, of the
form Ax + B. Thus, since m̂ has the same (finite) order as m, then A is a primitive
nth root of unity. Since A ∈ Q(α) and since Q(α) is at worst quadratic over Q, then
A = ±1,±i , or ±1/2 ± i

√
3/2. Thus, n = 1, 2, 3, 4, or 6.

We finish by showing that, when n = 3, 4, or 6, m(x) is conjugate to one of the
transformations from our list in the above lemma. For m(x) of order ≥ 3, choose
three rational numbers A, B, and C such that m(x) : A �→ B �→ C . Let s(x) be the
fractional linear transformation that takes 0 �→ A, −1 �→ B, and ∞ �→ C (note that
this s(x) will have rational coefficients). Then, for m̂(x) = s−1 ◦ m ◦ s(x), we have
that m̂(x) : 0 �→ −1 �→ ∞. This implies m̂(x) has the form (̂ax − 1)/(x + 1) for
some â = m̂(∞), and it’s now easy to show that the order of m̂(x) being 3, 4, or 6
forces â to equal 0, 1, or 2, respectively.

In Lemma 1, we can’t help but notice the suggestive pattern exhibited by the frac-
tional linear transformations of orders 3, 4, and 6. Each has the form (ax − 1)/(x + 1),
with a from 0 to 2, and so we might think that (3x − 1)/(x + 1) would also have fi-
nite order. Sadly, that isn’t so; the sequence that describes the as is actually an =
1 + 2 cos(2π/n), as we will see later.

The following lemma states that if we use only real coefficients, then we cannot
represent A4, S4, or A5 using fractional linear transformations. This is the last step;
after this lemma, we can proceed directly to the proof of our two theorems.

LEMMA 2. If K is a subfield of R, then all finite subgroups of the set of frac-
tional linear transformations with coefficients in K (equivalently, all finite subgroups
of PGL(2, K )) are either cyclic or dihedral.

Proof. By results of Lyndon and Ullman [5], we need only show that A4, S4, and A5

cannot be realized in PGL(2, K ). We will show the impossibility of A4; since A4 ⊂ S4

and A4 ⊂ A5, then this implies that S4 and A5 cannot be realized either.
Suppose we have a subgroup G isomorphic to A4. Since A4 contains elements

of order 3, we can assume by Lemma 1 that (after an appropriate conjugation)
−1/(x + 1) ∈ G. We note that the product of an element of order 3 (in A4) with
something of order 2 gives us a new element of order 3 (as is easily seen by consider-
ing products such as (abc) with (ab)(cd); see Gallian again [4, p. 104] for a complete
multiplication table for A4). However, every element of order 2 in PGL(2, K ) has
either the form −x + b (if it fixes ∞) or (ax + b)/(x − a) (if it takes ∞ to some fi-
nite a). Now, −1/(x + 1) composed with −x + b is 1/(x − b − 1), which has order 3
only for b = −1 ± i . And, −1/(x + 1) composed with

ax + b

x − a
is

−x + a

(a + 1)x + (b − a)
,
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and a few minutes of algebra will show that this has order 3 only for b = 1
2 (1 + 2a ±√−4a2 − 4a − 3), a complex number for all real values of a. Thus, A4 cannot be

realized using only real coefficients.

Proof of theorems We are now ready to prove our main theorems, which we restate
for convenience:

THEOREM 1. All finite subgroups of PGL(2, Q) are isomorphic to Cn or Dn for
n = 1, 2, 3, 4, or 6.

THEOREM 2. Every finite subgroup of PGL(2, R) is either cyclic or dihedral, and
there exist such subgroups of arbitrary order.

Proof. By Lemma 2, we only need concern ourselves with cyclic and dihedral sub-
groups. To show G = PGL(2, R) contains all cyclic and dihedral groups, we will show
that for every n > 0, there exists an element m(x) of order n such that for q(x) = 1/x ,
then m(x) and q(x) generate the dihedral group Dn (with Cn as a cyclic subgroup).

For n = 1, let m(x) = x , and for n = 2, let m(x) = −x . These clearly give us C1,
C2 and (with q(x) = 1/x) D1 and D2. Now assume n ≥ 3. Let ζn be a primitive nth
root of unity, in particular, e2π i/n, let an = 1 + 2 cos(2π/n) = 1 + ζn + 1/ζn (a real
number), and define m(x) as (an x − 1)/(x + 1). It’s not hard to show that

m−1(x) = x + 1

−x + an

and that q−1 ◦ m ◦ q = m−1. We need only show that m(x) has order n to exhibit
our dihedral group Dn . A clever way to do this is to define m̂ = s−1 ◦ m ◦ s with
s(x) = ζn + 1/x ; since s(∞) = ζn and m(ζn) = ζn , we have that m̂(∞) = ∞, and so
m̂(x) = Ax + B for some A, B ∈ C. By comparing m̂(x) and s−1 ◦ m ◦ s(x) for x = 0
and x = −1/ζn , we find that A = ζn and B = ζn/(ζn + 1). By a previous discussion,
m̂(x) (and hence m(x) itself) has order n. This proves Theorem 2.

If we now restrict ourselves to rational coefficients, then our discussion above, com-
bined with Lemma 1, proves Theorem 1. (Note that only for n = 3, 4, or 6 does the
element

m(x) = an x − 1

x + 1

have rational coefficients; these are exactly the elements mentioned in Lemma 1.)

The existence of a real fractional linear transformation of any order, as demonstrated
in this proof, deserves its own statement:

COROLLARY 1. For n ≥ 3 and an = 1 + 2 cos(2π/n), then (an x − 1)/(x + 1) has
order n under composition.

For further study This article just touches the surface of the many fascinating topics
associated with groups of fractional linear transformations and groups of matrices with
restricted entries. For example, a great deal of attention has been paid to the modular
group (denoted �(1)), which is the set{

ax + b

cx + d
: ad − bc = 1, a, b, c, d ∈ Z

}
.

This infinite group is generated by two noncommuting elements: p(x) = −1/x and
our old friend m(x) = −1/(x + 1) [9]. One could also venture into representation
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theory, which (loosely stated) asks which groups can be represented by matrices in
GL(V ) for V a complex vector space [7]. Then there is the fascinating theory of itera-
tions of rational functions. Ours are the quotients of linear polynomials and thus rather
simple, but if one considers quotients of polynomials of degree greater than or equal to
2, one begins to venture into the rich area of complex dynamics (see Beardon [1], and
also Devaney [2] for general analytic functions). As a single example, one can show
that any rational function of degree 5 in numerator and denominator (even with just
integer coefficients!) has periodic points (under iteration) of all orders (see Beardon [1,
Theorem 6.2.2]).

Finally, there are a few open questions suggested by this article, such as: for which
algebraic number fields K will all isomorphic finite groups in PGL(2, K ) actually be
conjugate in PGL(2, K )? This is certainly true for K = C (see Shurman [8], and also
Theorem 2.6.1 in the paper by Lyndon and Ullman [5]), and certainly not true for
K = Q (as seen in the remark following Lemma 1, above). Most likely, more can be
said. One might also ask how many nonconjugate groups (isomorphic to D3, say) are
in PGL(2, Q), and if there is a way to describe or index them all.
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Path Representation of One-Dimensional
Random Walks
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Imagine a particle moving on the x axis, starting at some initial position x = k, k > 0,
and moving back and forth on the line by random steps of unit length. Suppose that
the particle moves right with probability p and left with probability 1 − p, where, of
course, 0 < p < 1.
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