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ORBITS OF ALGEBRAIC NUMBERS WITH LOW HEIGHTS

GREGORY P. DRESDEN

Abstract. We prove that the two smallest values of h(α)+h( 1
1−α )+h(1− 1

α
)

are 0 and 0.4218 . . . , for α any algebraic integer.

Introduction

For K an algebraic number field, let Kv be the completion of K at the place v
and let | |v be the absolute value associated with this completion Kv (more precise
definitions are given below). For α ∈ K, we define the (logarithmic) Weil height,
h(α), as follows:

h(α) =
∑
v

log max(|α|v , 1).(1)

In this paper, we will prove

Theorem 1. Let α be an algebraic number, α 6= 0, 1.

(i) For α a primitive sixth root of unity,

h(α) + h(
1

1− α
) + h(1− 1

α
) = 0.

(ii) Otherwise,

h(α) + h(
1

1− α
) + h(1− 1

α
) ≥ 0.4218 . . . ,

with equality for α any root of the polynomial:

P1(z) = z6 − 3z5 + 5z4 − 5z3 + 5z2 − 3z + 1

= (z2 − z + 1)3 − (z2 − z)2.(2)

The reader will note that this theorem is a specific case of the following general
problem. We generalize the Weil height to P1(Q) in the obvious manner: for

x =

[
x1

x2

]
, we define

h(x) =
∑
v

log max(|x1|v, |x2|v).
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Then, for G a finite subgroup of PGL2(Q), we extend the Weil height to orbits
under the action of G, as follows:

hG(x) =
∑
g∈G

h(gx).

We now ask about the smallest values of hG(x) for x ∈ P1(Q). We see that Theorem
1 answers this question for G the cyclic group

G =

{[
1 0
0 1

]
,

[
0 1
−1 1

]
,

[
1 −1
1 0

]}
.

At the end of this paper we mention further work that is being done on other
subgroups G of PGL2(Q).

The reader will also note that this theorem is related to a recent result by Zagier
[7] in which he sharpens a result of Zhang [8] concerning a lower bound for h(α) +
h(1− α).

Let us now proceed to a proof of Theorem 1.

Definitions

For Kv the completion of the algebraic number field K at the place v, we will
need two absolute values, | |v (mentioned above) and ‖ ‖v. We define ‖ ‖v to be
the absolute value which, when restricted to Q, is the usual Euclidean or p-adic
absolute value, and we define | |v as follows

| |v = ‖ ‖dv/dv .(3)

It follows that | |v satisfies the product formula on K:
∏

v |β|v = 1 for all non-zero
β ∈ K. (Our normalizations of the absolute values are exactly as in [1] or [5].)
Let us also agree that single-bar absolute values, | |, without any subscript, will
always refer to the usual Euclidean absolute value on C. We will use the standard
notation log+(z) to refer to max(0, log(z)). Finally, we will need to define the
following function for our proof:

Ev(z) = B log

∥∥∥∥ (z2 − z + 1)3

(z2 − z)2

∥∥∥∥
v

− log+ ‖z‖v − log+

∥∥∥∥ 1

1− z

∥∥∥∥
v

− log+

∥∥∥∥1− 1

z

∥∥∥∥
v

.

(4)

The constant B will be specified later; it is a positive real number, between 0 and
1/2. Notice that Ev(z) is invariant under the transform z 7→ 1− 1

z ; this means that

Ev(z) = Ev(1− 1

z
) = Ev(

1

1− z
).(5)

In our proof of Theorem 1, we first establish some local estimates, and we then use
these to establish a global result that will prove the theorem.

Local estimates

Lemma 1. Let z be an algebraic number, z 6= 0, 1, or a primitive sixth root of
unity.

(i) Ev(z) ≤ 0 for v finite, with equality for z any root of P1.
(ii) Ev(z) ≤ −0.4218 . . . for v infinite, with equality for z any root of P1.
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Proof of Lemma 1. The two parts of this lemma will require entirely different tech-
niques to prove. In (i), for v finite, we will rely on the triangle inequality property
of ‖ ‖v, and in (ii), we will differentiate Ev(z) and solve for z. (In both parts, we
assume that z is neither 0 nor 1.)

Proof of part (i): v finite. Recall the ultrametric triangle inequality: ‖a + b‖v ≤
max(‖a‖v, ‖b‖v), and if ‖a‖v 6= ‖b‖v, then ‖a+ b‖v = max(‖a‖v, ‖b‖v).

For Φ6(z) = z2 − z + 1, we have the following interesting identity:

Φ6(z)Φ6(
1

1 − z
)Φ6(1 − 1

z
) =

(z2 − z + 1)3

(z2 − z)2
.(6)

For finite v, then ‖Φ6(z)‖v ≤ max(1, ‖z2‖v), and so log ‖Φ6(z)‖v ≤ 2 log+ ‖z‖v.
Thus, if we apply ‖ ‖v to both sides of (6) and then take the logarithm, we conclude:

2 log+ ‖z‖v + 2 log+

∥∥∥∥ 1

1− z

∥∥∥∥
v

+ 2 log+

∥∥∥∥1− 1

z

∥∥∥∥
v

≥ log

∥∥∥∥ (z2 − z + 1)3

(z2 − z)2

∥∥∥∥
v

.(7)

Since the constant B in equation (4) is less than 1/2, this implies that Ev(z) ≤ 0.
It remains to show that equality is achieved for z a root of the polynomial P1.

Let z1 be such a root. It is easy to show that 1 − 1
z1

and 1
1−z1 are also roots of

P1, and since P1 is a monic polynomial with integer coefficients and a constant
coefficient of 1, then all of its roots are algebraic units. This implies that all three
of the log+ terms in Ev(z1) are zero; the first term is clearly zero as well, and thus
Ev(z1) = 0.

Proof of part (ii): v infinite. We need to define a new constant, D, in terms of B:

D =
1

2
[(1 + 2B) log(1 + 2B)− (6B) log(6B)− (1 − 4B) log(1− 4B)] .(8)

We now describe the method used to determine the value of B. This constant B is
chosen so as to maximize the value of D; by differentiating (8) and solving, we find
that B should be the single real root of the polynomial 184x3 + 6x − 1. That is,
B = 0.1172 . . . , and subsequently, D = 0.4218 . . . . (Notice that −D is the number
appearing in the statement of Lemma 1, part (ii).)

Let us now show that Ev(z) ≤ −D for all z ∈ C. Recall that for v infinite, then
‖ ‖v = | |, the regular Euclidean absolute value on C.

Since Ev(z) goes to −∞ for z near 0, 1, ∞, and the primitive sixth roots of
unity, and since Ev(z) is harmonic off the three curves |z| = 1,

∣∣1− 1
z

∣∣ = 1, and∣∣∣ 1
1−z
∣∣∣ = 1, then (by the maximum principle) Ev(z) achieves its maximum only

on these three curves. By the invariance expressed in equation (5), we need only
check one of these curves. We consider the straight line

∣∣1− 1
z

∣∣ = 1, which is easily
parametrized by z = 1/2 + iy. Since Ev(z) = Ev(z̄), we need only consider y ≥ 0.
We substitute our parametrization into Ev(z) and derive the following formula:

Ev(1/2 + iy) =

{
3B log(3

4 − y2) + (1
2 − 2B) log(1

4 + y2) for y ∈ (0,
√

3
2 ),

3B log(y2 − 3
4 )− (1

2 + 2B) log(1
4 + y2) for y ∈ (

√
3

2 ,∞).
(9)

If we let S = y2 + 1/4, then (9) becomes

Ev(z) =

{
3B log(1 − S) + (1

2 − 2B) log(S) for S ∈ (1
4 , 1),

3B log(S − 1)− (1
2 + 2B) log(S) for S ∈ (1,∞).

(10)
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We now find the maximum of Ev(z) by differentiating (10) with respect to S, setting
the result equal to zero, and solving for S. We find that Ev(z) has two maxima, at

S1 =
1− 4B

1 + 2B
, and S2 =

1 + 4B

1− 2B
.(11)

Using our value of B we can compute that S1 ∈ (1/4, 1) and S2 ∈ (1,∞). That both
points are (local) maxima for Ev(z) can easily be verified by the second derivative
test.

We substitute S1 and S2 into Ev and find the following:

Ev(S1) =
1

2
[(6B) log(6B) + (1− 4B) log(1 − 4B)− (1 + 2B) log(1 + 2B)]

= −D
and,

Ev(S2) =
1

2
[(6B) log(6B)− (1 + 4B) log(1 + 4B) + (1− 2B) log(1 − 2B)]

< −D.
Thus, the maximum value for Ev(z) is −D. This value is attained at S1 =

(1−4B)(1+2B)−1, and since B is a root of 184x3 +6x−1, we find that S1 satisfies

S3
1 − 2S2

1 + 3S1 − 1 = 0.(12)

If we recall that S1 = y2 + 1/4, and z = 1/2 + iy, then we see that S1 represents
the algebraic number z that is a root of the polynomial

z6 − 3z5 + 5z4 − 5z3 + 5z2 − 3z + 1 = 0.

This is exactly the polynomial P1(z) from equation (2). We have thus shown that
Ev(z) ≤ −D, and Ev(z) = −D for z a root of P1(z). Of course, P1 has five other
roots; these are also maximums for Ev(z) and reflect the invariance of Ev from
equation (5) and the fact that Ev(z) = Ev(z̄).

Global estimates

We will now combine our local estimates to prove Theorem 1.
We first need to introduce a new constant, nv, defined as nv = 0 for v finite,

and nv = dv/d for v infinite. We now combine (i) and (ii) of Lemma 1 into a single
statement:

dv/d Ev(z) ≤ −nv D.(13)

Proof of Theorem 1. In equation (13), we multiply each logarithm in Ev(z) by the
dv/d term, and use the relation expressed in equation (3), to produce:

B log

∣∣∣∣ (z2 − z + 1)3

(z2 − z)2

∣∣∣∣
v

− log+ |z|v − log+

∣∣∣∣ 1

1− z

∣∣∣∣
v

− log+

∣∣∣∣1− 1

z

∣∣∣∣
v

≤ −nv D.(14)

We now make use of the identities∑
v

nv = 1,
∑
v

log |β|v = 0,
∑
v

log+ |β|v = h(β).(15)
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(These last two formulas hold for all non-zero algebraic numbers, β). Then, for z
not zero, 1, or a primitive sixth root of unity, we can sum (14) over all places v and
apply (15) to get

−h(z)− h(
1

1− z
)− h(1− 1

z
) ≤ −D.

This implies

h(z) + h(
1

1− z
) + h(1− 1

z
) ≥ D = 0.4218 . . . ,(16)

and since equality holds in (13) for z any root of P1, the same can be said of (16).
This establishes part (ii) of Theorem 1; as for part (i), it follows easily from the
fact that the minimal polynomial of the sixth roots of unity is z2 − z + 1.

Applications and generalizations

It is interesting to note that the Weil height h is related to the Mahler measure
of a polynomial (as seen in [2] or [3]). Recall that for a polynomial f(x) = a0 +
a1x+ a2x

2 + · · ·+ anx
n, with zeroes at α1, . . . , αn, we define the Mahler measure

M(f) to be

M(f) = |an|
n∏
i=1

max(|αi|, 1).

D. Lehmer [4] asked if there exists a non-trivial lower bound to M(f) for f not
cyclotomic (it is conjectured that this lower bound is 1.17628 . . . ). The exact rela-
tionship between the Weil height and the Mahler measure is as follows [7]. For αi
a root of the polynomial f(x), then

h(αi) =
1

deg f
logM(f).

Given this relation, one can establish an immediate corollary to Theorem 1. Let
G be the cyclic group of order three, generated by z 7→ 1 − 1/z. Let f(x) ∈ Z[x]
be a polynomial of degree n such that G is a subgroup of its Galois group. Then,

M(f) ≥ enk

where k is 1
3 (0.4218 . . . ). One can compare this to the result of Dobrowolski [3],

later improved by Rausch [6], that for g(x) ∈ Z[x] any non-cyclotomic polynomial
of degree n, then

M(g) ≥ 1 + b

(
log log n

logn

)3

for b a small positive constant.
Let us now return to the generalization of Theorem 1, mentioned earlier in this

paper. It is certainly possible to extend this result to other subgroups of PGL2(Q);
consider the subgroup K defined as

K =

{[
1 0
0 1

]
,

[
1 1
−1 1

]
,

[
0 −1
1 0

]
,

[
1 −1
1 1

]}
.

Then, in a proof similar to the proof of Theorem 1, we can show that hK(x) = 0

for x =

[
i
1

]
,

[−i
1

]
, or any element in the orbit of

[
0
1

]
under K; and that otherwise
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hK(x) ≥ 0.732858 . . . , with equality at x a root of the homogeneous polynomial
x8

1 + 5x6
1x

2
2 + 4x4

1x
4
2 + 5x2

1x
6
2 + x8

2, = (x2
1 + x2

2)
4 + ((x1x2)(x1 + x2)(x1 − x2))

2.
An interesting problem would be to specify for which other subgroups G of

PGL2(Q) one can find a similar statement.
It would also be interesting to determine if one can find other low values in the

spectrum of hG for a given group G, along with the exact algebraic numbers which
achieve those values. For our original group G of order 3, after the first non-zero
value of 0.4218 . . . , the author conjectures that the next two values in the spectrum
of hG are 0.43359381 . . . and 0.43798825 . . . .

I wish to thank Dr. Vaaler for his many helpful comments, and also for suggesting
the identity in formula (6).
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