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SUMS OF HEIGHTS OF ALGEBRAIC NUMBERS

GREGORY P. DRESDEN

Abstract. For At(x) = f(x) − t g(x), we consider the set {
∑
At(α)=0 h(α) :

t ∈ Q}. The polynomials f(x), g(x) are in Z[x], with only mild restrictions,
and h(α) is the Weil height of α. We show that this set is dense in [d,∞) for
some effectively computable limit point d.

1. Introduction

Let α be an algebraic number, and h(α) its Weil height, as defined below. Much
interest has recently been given to the spectrum of various modifications of this
height operator h. For example, Schinzel [10] showed that the first positive number
in the set ΛR = {h(α) : α totally real} is 0.2406 . . . . Smyth [11, 12] found the next
three positive points in ΛR and then demonstrated that ΛR has a limit point of
0.27328 . . . and is dense beyond that point; Flammang [8] found the fifth and sixth
points in this spectrum (actually, for totally positive algebraic numbers, but this
amounts to the same thing). Similar results hold for Λ2 = {h(α)+h(1−α) : α ∈ Q}
(as seen in Zhang [15] and Zagier [14], with limit points and regions of density found
by Doche [4, 3]) and for Λ3 = {h(α) + h(1 − 1

α ) + h( 1
1−α ) : α ∈ Q} (see Dresden

[5]). In this article, we prove the following theorem, which generalizes some of the
previously stated results (as defined later, ` and C are the leading coefficient and
content of a polynomial).

Theorem 1.1. Let f(x), g(x) be fixed polynomials in Z[x] with deg f > deg g ≥ 0,
`(f) |C(g), and C(f) = 1. For t any complex number, let At(x) = f(x) − t g(x).
Then, there exists an effectively computable limit point d ≥ 0 (depending only on f
and g) such that the set {

∑
At(α)=0 h(α) : t ∈ Q} is dense in [d,∞).

As an aside, we note that we might have f(x) = x and g(x) = 1, in which case
the set in Theorem 1.1 is simply {h(α) : α ∈ Q}. This is trivially dense in [0,∞),
as seen by considering α = p1/n for p a prime number, but our methods in the
proof of Theorem 1.1 would produce a d of only 0.2406 . . . . In light of this, we
must state that there is no guarantee that our constant d is the “best” constant.
We also note that we can assume without loss of generality that f(x) and g(x) are
relatively prime. If they share a common factor (say q(x)), then we could write
f(x)− t g(x) = (f0(x)− t g0(x)) · q(x), and if we let A0,t(x) = f0(x)− t g0(x), then∑
At(α)=0 h(α) =

∑
A0,t(α)=0 h(α)+

∑
q(α)=0 h(α). That last sum will be some fixed
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number independent of t, and when added to the d (from f0 and g0) in Theorem
1.1 will produce the correct limit point for f and g.

With the help of Theorem 1.1, we can also prove

Corollary 1.2. Let G be a finite group of fractional linear transforms σ(x), where

σ(x) =
ax+ b

cx+ d
, ad− bc 6= 0, a, b, c, d ∈ Q.

Then, there exists an effectively computable limit point e ≥ 0 (depending only on
G) such that the set

{∑
σ∈G h(σ(α)) : α ∈ Q

}
is dense in [e,∞).

Examples and applications of both Theorem 1.1 and Corollary 1.2 are given in
the last section of this paper.

2. Definitions

Let α be an algebraic number, and let p(x) be its minimal polynomial in Z[x],

p(x) = pnx
n + · · ·+ p1x+ p0 = pn

n∏
i=1

(x− αi).

We define the Mahler measure M(p) as M(p) = |pn|
∏n
i=1 max(|αi|, 1). We also

define C(f) to be the content of a polynomial f(x); that is, the gcd of its coef-
ficients, and `(f) to be the leading coefficient. We will use log+ |z| to represent
log max(|z|, 1), allowing us to state

(2.1) h(α) =
1

deg p

log |`(p)|+
∑

p(αi)=0

log+ |αi|

 =
1

deg p
logM(p).

For σ(x) = ax+b
cx+d as in Corollary 1.2, we can think of σ as a member of PGL(2,Q)

if we write σ =
[
a b
c d

]
, acting on a projective point

[
x
1

]
. We will view σ in

both ways in this article. Examples of such operators are σ(x) = 1 − x (in which
σ2(x) = x) and σ(x) = 1

1−x (for which σ3(x) = x). Finally, we will use <(z) and
=(z) to denote the real and imaginary parts of z, and we recall that a totally real
(totally positive) algebraic number is a number α such that it and all its conjugates
are real (positive) numbers.

3. Polynomials

Throughout this section, f(x) and g(x) are as defined in Theorem 1.1.

Lemma 3.1. Let T be a complete set of algebraic conjugates of some algebraic
integer. Define R(x) ∈ Z[x] as

R(x) =
∏
t∈T
{f(x)− t g(x)},

where f(x), g(x) are as defined above. Then, C(R), the gcd of the coefficients of
R(x), is 1.
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Proof. Let n = deg f , and write R(x) as

(3.1) R(x) =
∏
t∈T

{
fnx

n + · · ·+ (fk − tgk)xk + · · ·+ (f0 − tg0)
}
,

and suppose that p is a prime such that p |C(R). Clearly, this implies p | fn, and
since fn = `(f), which divides C(g), then p | gi ∀ i. Now since C(f) = 1, choose k
such that p | fk+i ∀ i > 0 but p - fk, and consider the coefficient of xk|T | in R(x), in
(3.1) above. This coefficient is a sum of many terms, all but one of which contain
a factor of the form (fk+i − t gk+i) with i > 0, and hence are divisible by p. The
one term which does not contain such a factor is the term found by multiplying
together all the (fk − tgk)xk ’s in (3.1) above, giving us∏
t∈T

(fk − tgk)xk =

(
fk
|T | −

(∑
t∈T

t

)
fk
|T |−1gk + other terms with gk . . .

)
xk|T |.

Recalling that p | gi ∀ i but p - fk, we can conclude that p does not divide this
one (large) term, and hence does not divide the entire coefficient of xk|T |. Thus,
p - C(R). �

In addition to the coefficients of this polynomial R(x) ∈ Z[x], we are also inter-
ested in its roots. The following lemma gives us some useful information that we
will need in the sequel:

Lemma 3.2. For f(x), g(x) as above, let α1, . . . αdeg g represent the roots of g(x)
(with possible repetition), and let t be any real number. Then, for all sufficiently
large |t|, we can label the roots of f(x)− t g(x) = 0 as α1,t, . . . αdeg f,t such that

lim
|t|→∞

αj,t =
{
αj j ≤ deg g,
∞ j > deg g.

Furthermore, for αj a root of g on the unit circle, and for all |t| sufficiently large
and of the same sign, then the root αj,t either always is on the unit circle, or never
is.

Proof. We first point out that (for t 6= 0) the roots of f(x)− t g(x) are exactly the
roots of g(x) − f(x)/t, and that the latter function converges uniformly (in t) on
bounded subsets of C to g(x). With this in mind, consider a disc with radius A
such that all the roots of g(x) are contained in its interior. Since g(x) and f(x)/t
are analytic on this disc and since f(x)/t converges to 0 as |t| → ∞, we can apply
Rouché’s Theorem [13, p. 22] to assert that for all |t| sufficiently large, f(x)− t g(x)
has exactly deg g roots inside this disc of radius A. Let us label the roots outside
the disc as αj,t for j from 1+deg g to deg f (we know there is at least one such root,
as deg g < deg f). Since A can be chosen to be arbitrarily large, we can conclude
that lim|t|→∞ αj,t =∞ for j > deg g. Returning to the roots inside the circle, let us
draw a small disc around each root αj of g(x) such that no other distinct root of g
is contained therein. By Rouché’s Theorem, we can (for |t| sufficiently large) label
our roots of f(x) − t g(x) as αj,t such that each αj,t is contained in the small disc
about αj . These αj,t are continuous functions of t, so the only possible ambiguity
in labelling them would occur if one of the αj ’s has multiplicity n > 1. In this
case, Rouché’s Theorem tells us we have n of the αj,t’s in our small disc around
αj , and we simply need a consistent labelling scheme (say, by magnitude and then
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by argument) to avoid confusion. Taking smaller and smaller discs as |t| → ∞, we
can conclude that lim|t|→∞ αj,t = αj for j ≤ deg g.

Let us now prove the second part of this lemma. Suppose αj = eiθ0 is a root
of g on the unit circle. If, for some particular t of sufficiently large magnitude,
f(x)− t g(x) has a root αj,t = eiθ on the unit circle and close to eiθ0 , then we have

(3.2) f(cos θ + i sin θ)− t g(cos θ + i sin θ) = 0,

or, put in another way,

(3.3) =
(
f(cos θ + i sin θ)
g(cos θ + i sin θ)

)
= =(t) = 0,

which implies

(3.4) = (f(cos θ + i sin θ) · g(cos θ − i sin θ)) = 0.

For θ near θ0, this trigonometric polynomial either is identically zero or is zero
only at θ = θ0; this implies that for all t of sufficiently large magnitude this root
αj,t mentioned above either always is on the unit circle (near eiθ0) or never is on
the circle (but still approaches eiθ0). This completes the proof. �

For f(x), g(x) as above, let us define m(t) as

(3.5) m(t) =
∏

At(α)=0

max {1, |α|}, where At(x) = f(x)− t g(x).

It should be clear that m(t) is continuous, as the roots of f(x)−t g(x) are continuous
functions of their coefficients, which are themselves all continuous in t. We now see
how this function m(t) is related to the sum of heights.

Proposition 3.3. Let f(x), g(x) be as in Theorem 1.1. Let T be a complete set
of algebraic conjugates of some totally real algebraic integer t, and as before let
At(x) = f(x)− t g(x). Then,

(3.6)
∑

At(α)=0

h(α) = log `(f) +
1
|T |
∑
t∈T

logm(t).

Proof. To find the heights of the roots of At(x) = f(x) − t g(x), we must first find
the minimal polynomials of those roots. Let us suppose that our polynomial At(x)
factors over Q(t) as

(3.7) At(x) = f(x)− t g(x) =
I∏
i=1

pi(x; t),

for each pi(x; t) irreducible and in Q(t)[x]. Define Pi(x) =
∏
t∈T pi(x; t), a poly-

nomial in Q[x], and note that
∏I
i=1 Pi(x) =

∏
t∈T f(x) − t g(x) = R(x), where

R(x) (as seen in Lemma 3.1) is in Z[x] with C(R) = 1. Hence, we can assume
without loss of generality (by multiplying the polynomials pi(x; t) by appropriate
constants) that the polynomials Pi(x) are in Z[x]. Furthermore, since C(R) = 1,
then C(Pi) = 1 for every i.

Let α be a root of At(x). Then, α is a root of pi(x; t) for some i, and hence of
Pi. Since Pi has degree deg pi(x; t) · |T |, and α is of degree

[Q(α) : Q(t)] · [Q(t) : Q] = deg pi(x; t) · |T |,
and since Pi ∈ Z[x] with C(Pi) = 1, then Pi is the minimal polynomial for α.
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So, recalling the connection between heights and Mahler measure in equation
(2.1), we have

h(α) =
1

degPi(x)
logM(Pi)

=
1

|T | · deg pi(x; t)

log `(Pi) +
∑

Pi(γ)=0

log+ |γ|

 .

This holds for every root of pi(x; t), so summing over these roots we get

∑
pi(α;t)=0

h(α) =
1
|T |

log `(Pi) +
∑

Pi(γ)=0

log+ |γ|

 .

We now sum over i, and since
∏
i pi(x; t) = At(x), our formula becomes

∑
At(α)=0

h(α) =
1
|T |

I∑
i=1

log `(Pi) +
∑

Pi(γ)=0

log+ |γ|


=

1
|T |

log `(R) +
I∑
i=1

∑
Pi(γ)=0

log+ |γ|

 .

Let us now consider that last double sum, which is over all the roots of R(x) =∏I
i=1 Pi(x). Since we also have R(x) =

∏
t∈T f(x) − t g(x) =

∏
t∈T At(x), we can

rewrite the above equation as∑
At(α)=0

h(α) =
1
|T | log `(R) +

1
|T |
∑
t∈T

∑
At(γ)=0

log+ |γ|.

Using equation (3.5) and the definition of R(x), we have our result:∑
At(α)=0

h(α) = log `(f) +
1
|T |
∑
t∈T

logm(t). �

4. Sets of algebraic numbers

Our goal in this section is to generalize certain results of Smyth’s on algebraic
numbers. In particular, we want to find sets of totally real algebraic numbers
Bn = {βn,i}2

n

i=1 such that

(4.1) the limit L0 = lim
n→∞

1
|Bn|

∑
β∈Bn

logm(β) exists.

This will be a major step in establishing the existence of a limit point for the set{∑
At(α)=0 h(α)

}
, as can be gleaned from formula (3.6). We then want to find

other sets of algebraic numbers Bn such that the limits in equation (4.1) will be
dense beyond L0. Fortunately, much of this work has been done by C. Smyth in
[11]. (Smyth’s totally real algebraic numbers βn have proved to be quite useful. It’s
not hard to show that (βn)2 is a totally positive algebraic number, and a complete
set of algebraic conjugates of (βn)2 is simply the set {(βn,i)2 : βn,i ∈ Bn}. These
sets are used by V. Flammang [7] on lengths of polynomials, and by M. J. Bertin
[1] on lower bounds for the heights of totally positive algebraic integers.)
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We begin with b any odd positive integer. Define β0 = b, and βn > 0 by H(βn)

= βn−1 (n = 1, 2, . . . ), where H(x) = x− 1
x

. We have

Theorem 4.1 (Smyth, 1980). βn (defined above) is a totally real algebraic integer
of degree 2n over the rationals. In the case where β0 = b = 1, the sequence

h(β1), h(β2), h(β3), h(β4), · · · ≈ 0.241 . . . , 0.261 . . . , 0.268 . . . 0.272 . . . ,

of elements of ΛR has limit point 0.27328 . . . . Furthermore, ΛR is dense beyond
this point.

Proof. Theorems 1 and 2, and Lemmas 4 and 5, in [11]. �

If we let the set Bn = {βn,i}2
n

i=1 consist of βn and all its conjugates, then we can
define the distribution function Fn(x) as

Fn(x) =
1
2n
· (the number of elements of Bn in (−∞, x]) .

We note that since dFn(x) is a discrete measure supported only on the set Bn, then

(4.2)
∫ ∞
−∞

φ(x)dFn(x) =
1
2n

2n∑
i=1

φ(βn,i).

With this in mind, we can prove

Theorem 4.2 (Smyth, 1980). Let Fn(x) be as above (with β0 = b any odd positive
integer), let µ(x) ≥ 1 be a continuous function, and let m1,m2, and A be positive
integers. Then

(1) F (x) = limn→∞ Fn(x) exists and is a continuous function.
(2) If µ(x) ≤ (m1)|x|m2 for |x| > A, and if µ(x) is monotone decreasing on

(−∞,−A) and monotone increasing on (A,∞), then

L0 = lim
n→∞

∫ ∞
−∞

logµ(x)dFn(x) exists, and is equal to
∫ ∞
−∞

logµ(x)dF (x).

(3) If, in addition, (1/m1)|x|m2 ≤ µ(x), then for ω > 0, ε > 0 arbitrarily
chosen, there exist a positive integer n > 0 and a positive odd integer b = β0

such that ∣∣∣∣∣ 1
2n

2n∑
i=1

logµ(βn,i) − (L0 + ω)

∣∣∣∣∣ < ε

(where the numbers βn,i are as defined above). In other words, we can make∫∞
−∞ logµ(x)dFn(x) arbitrarily close to any number greater than L0.

Proof. This is a generalization of Lemma 9 and Theorem 2 in Smyth’s paper [11].
A complete proof is given in Theorems 6.2.10 and 7.3.1 in [5]. �

5. Limit points and density

At this point, we need only show that the function m(t) defined in (3.5) satisfies
the conditions on µ(t) as listed in Theorem 4.2. This will enable us to prove
Theorem 1.1.
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5.1. Results on m(t).

Lemma 5.1. For f(x), g(x) as in Theorem 1.1, a function m(t) as in (3.5) satisfies
the conditions of Theorem 4.2. In other words, there is some positive number A
such that

(1) there exist positive integers m1 and m2 such that m(t) satisfies
1
m1
|t|m2 ≤ m(t) ≤ m1|t|m2 for |t| > A.

(2) m(t) is monotone decreasing on (−∞,−A) and monotone increasing on
(A,∞).

Proof. If f, g satisfy the conditions of Theorem 1.1, then so do f,−g, so we can
assume without loss of generality that t is positive.

We recall Jensen’s formula, which states that for F holomorphic, F (0) 6= 0, r > 0,
and α1, . . . , αN the zeroes of F in the closed disc D(0, r) listed with multiplicities,
we have

(5.1) |F (0)|
N∏
j=1

r

|αj |
= exp

{
1

2π

∫ π

−π
log |F (reiθ)|dθ

}
.

In particular, for P (x) a polynomial with roots αj and leading coefficient `(P ),
with P (0) 6= 0, since

(5.2) |P (0)| = |`(P )|
∏
|αj |≤r

|αj |
∏
|αj |>r

|αj |,

then Jensen’s formula gives us

(5.3) |`(P )|
∏
|αj |>r

|αj | =
1
rN

exp
{

1
2π

∫ π

−π
log |P (reiθ)|dθ

}
,

where N is the number of roots of P (x) that have absolute value ≤ r.
As mentioned earlier, we will use <(z) for the real part of a complex expression.

Recall that −|z| ≤ <(z) ≤ |z|. We should also point out that f(0) and g(0) cannot
both be zero (as f , g are, without loss of generality, assumed to be relatively prime
polynomials; see the note after Theorem 1.1) and so f(0)− t g(0) is zero for at most
one value of t.

We now prove part (1). Choose R such that all roots of g(x) = 0 are inside
D(0, R/2). By Lemma 3.2, we know that for t sufficiently large, the roots of f(x)−
t g(x) = 0 are all within ε of the roots of g(x) = 0 or outside a circle of radius

2R. In particular,
∣∣∣∣f(x)
t
− g(x)

∣∣∣∣ has no zeroes on the circle of radius R, and in

fact, is both bounded and bounded away from 0 on this circle. We also know that∏
R>|αj,t|>1 |αj,t| is a bounded number.
Thus, by the Dominated Convergence Theorem we have:

(5.4) lim
t→∞

1
2π

∫ π

−π
log
∣∣∣∣f(Reiθ)

t
− g(Reiθ)

∣∣∣∣ dθ =
1

2π

∫ π

−π
log
∣∣g(Reiθ)

∣∣ dθ.
Now we apply (5.3) with P (x) =

f(x)
t
− g(x) and r = R, to find that

(5.5)
|`(f)|
t
·
∏

|αj,t|>R
|αj,t| =

1
RN

exp
{

1
2π

∫ π

−π
log
∣∣∣∣f(Reiθ)

t
− g(Reiθ)

∣∣∣∣ dθ},
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where `(f) is the leading coefficient of f . As t → ∞, by (5.4) the right-hand side
of (5.5) converges to

1
RN

exp
{

1
2π

∫ π

−π
log
∣∣g(Reiθ)

∣∣ dθ},
which (since g is nonzero on this circle) is well defined and equal to some constant,
g0. So, for all t sufficiently large,∣∣∣∣∣∣ |`(f)|

t
·
∏

|αj,t|>R
|αj,t| − g0

∣∣∣∣∣∣ < ε.

(We note that each root αj,t of f(x) − t g(x) is a function of t.) So, for all t
sufficiently large,∣∣∣∣∣∣ |`(f)|

t
·
∏
|αj,t|>1

|αj,t| − g0

∏
R>|αj,t|>1

|αj,t|

∣∣∣∣∣∣ <
ε · ∏

R>|αj,t|>1

|αj,t|

 < ε′.

So, we get ∣∣∣∣∣∣m(t)
t

− g0

|`(f)|
∏

R>|αj,t|>1

|αj,t|

∣∣∣∣∣∣ < ε′

`(f)
= ε′′.

As t grows, the roots αj,t on the left of the above equation approach the roots of
g, and so for t sufficiently large, there exists an m1 > 0 such that

1
m1

<
m(t)
t

< m1,

and so
1
m1

t < m(t) < m1t.

With m2 = 1, this satisfies part (1).
Now we will prove part (2). Recall that we need only concern ourselves with t

positive.
First suppose g has no roots on the unit circle. Since the roots of f(x) − t g(x)

approach∞ and the roots of g, then for all sufficiently large t we can assume that
the roots of f(x) − t g(x) are bounded away from the unit circle. In particular,
1/|f − tg| is bounded on the unit circle (as is, of course, |f − tg| itself). Taking
r = 1 in (5.3), we see that

(5.6) m(t) =
1
|`(f)| exp

{
1

2π

∫ π

−π
log
∣∣f(eiθ)− t g(eiθ)

∣∣ dθ}.
By our comments above on |f−tg|, we can take the derivative of the above equation
with respect to t, and find that

d

dt
m(t) = m(t) · d

dt

{
1

2π

∫ π

−π
log |f − tg|dθ

}
= m(t) · d

dt

{
1

4π

∫ π

−π
log
[
(f − tg)(f − tg)

]
dθ

}
= m(t) · 1

2π

∫ π

−π

t|g|2 −<{gf}
|f − tg|2 dθ.(5.7)
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This denominator |f − tg|2 is always positive (and is nonzero on the circle of radius
one).

For t > sup|z|=1

|f |
|g| (well-defined since g 6= 0 on |z| = 1), the numerator of the

integrand in (5.7) satisfies

(5.8) t|g|2 −<{gf} ≥ t|g|2 − |f ||g| > 0.

So,
d

dt
m(t) > 0, and m(t) is monotone increasing.

Now suppose g does have roots on the unit circle. Choose t sufficiently large
that, by Lemma 3.2, any of the roots αi,t of f − tg that will be on the unit circle
are already there. Then, there is an ε > 0 such that for all t′ in a neighborhood of
t the roots αi,t′ of f − t′g are either in D(0, 1) or outside D(0, 1 + 2ε), but not in
the annulus in between. (The roots αi,t′ are continuous in t′ for sufficiently small
neighborhoods around t.) We then take r = 1 + ε, and we note that

(5.9) m(t) =
∏
|αi|>1

|αi| =
∏
|αi|>r

|αi|,

which by Jensen’s formula (5.3) is

(5.10) m(t) =
1
|`(f)|

1
rN

exp
{

1
2π

∫ π

−π
log
∣∣f(reiθ)− t g(reiθ)

∣∣ dθ},
and since f−tg is both bounded and bounded away from zero on the circle of radius
r, and g itself is nonzero as well, then we proceed as in (5.7) and (5.8), taking the
derivative of m(t) with respect to t to find that it is monotone increasing for t
sufficiently large.

�
5.2. Proof of Theorem 1.1. We are now able to prove our original theorem.

Proof. Let β0 = b be any odd integer, and let the sets Bn = {βn,i}2
n

i=1 be as defined
above. Let t be some βn,i in Bn, so that At(x) = f(x) − βn,i g(x). Then, using
T = Bn, we can apply Proposition 3.3 to state

(5.11)
∑

At(α)=0

h(α) = log `(f) +
1
2n

2n∑
i=1

logm(βn,i).

We know from Lemma 5.1 that m(t) satisfies the conditions of Theorem 4.2. We
now use equation (4.2) and Theorem 4.2, part (2), to state

lim
n→∞

∫ ∞
−∞

logm(x) dFn(x) exists, and equals
∫ ∞
−∞

logm(x) dF (x).

As before, we let L0 represent this limit. Then by part (3) of Theorem 4.2, for
all ω > 0, there exist n > 0 and an odd integer b > 0 such that

(5.12)

∣∣∣∣∣ 1
2n

2n∑
i=1

logm(βn,i)− (L0 + ω)

∣∣∣∣∣ < ε.

We use equation (5.11) on the above formula to give us

(5.13)

∣∣∣∣∣∣
∑

At(α)=0

h(α)− (L0 + log `(f) + ω)

∣∣∣∣∣∣ < ε.



1496 GREGORY P. DRESDEN

Since ω was arbitrary, our sum is indeed dense in [L0 + log `(f),∞). Let d =
L0 + log `(f), and we get our effectively computable limit point. (When actually
computing L0, we prefer to use equation (4.1)). �

6. Proof of Corollary 1.2

For G a finite group as described in Corollary 1.2, we can find polynomials f, g
that satisfy the conditions of Theorem 1.1 and such that the roots of f(x)−t g(x) =
0 are exactly of the form σ(α) as σ runs through G.

Our first theorem helps us establish the existence of these polynomials:

Theorem 6.1 (Vaaler). For G a finite subgroup of PGL(2,K), there exist relatively
prime monic polynomials f , g in K[x], 0 ≤ deg(g) < deg(f) = |G|, such that for
all t, the roots of f(x)− t g(x) = 0 are of the form σ(α) for σ ∈ G

Remark. A more detailed version of this theorem, with a proof via Luroth’s Theo-
rem, first appeared in an early draft of [2].

Proof. Let H ≤ G be the subgroup of all affine elements ax+b of G (note that since
the identity element 1x + 0 is in H , then H is nonempty). Let s1, . . . sJ be right
coset representatives for H in G (with s1, the coset representative for H itself, being
s1(x) = x), so that any σ ∈ G can be written as σ ∈ Hsj or, more appropriately,
σ(x) = hi(sj(x)). We note that if two elements of G have the same denominator

cx + d, then they must be in the same coset Hsj , as, given σ1(x) =
ax+ b

cx+ d
and

σ2(x) =
a′x+ b′

cx+ d
, then σ1 · σ−1

2 is easily shown to be affine. However, if a third

element σ3 has cx+ d as a numerator, then σ1 ·σ−1
3 is easily shown to be nonaffine,

and hence σ3 is not in the same coset as σ1 and σ2.
Let A(x) =

∏
H aix+ bi, where the product is taken over all elements in H , and

let g(x) =
∏
G−H x + di/ci, where the product is taken over all elements

aix+ bi
cix+ di

in G−H (if no such elements exist, we define g(x) = 1). Note that this product is
well-defined, and makes g(x) a monic polynomial. Finally, we define f(x) as f(x) =
f0 ·g(x)·

∑J
j=1 A(sj(x)), with f0 an appropriate constant to make f(x) monic. Note

that each A(sj(x)) is simply the product of all elements in the coset Hsj . Note
also that f(x) is a polynomial (since the g(x) in front of the sum will cancel out
all denominators in each A(sj(x))). As for the degree of f , since s1(x) = x, then
degA(x) = degA(s1(x)) ≥ degA(sj(x)), and so deg f(x) = deg g(x)+degA(s1(x))
= |G−H |+ |H | = |G|.

We now show that f and g are relatively prime. Suppose g(x0) = 0; this implies

x0 = −d/c for c, d from some term
ax+ b

cx+ d
of G. Let sk(x) be the coset representa-

tive for the coset of H containing this term. (By our discussion above, while there
may be more than one term with the denominator cx+ d, they must all be in this
same coset.) Now, let us consider what happens in our definition of f(x) when we
multiply g(x) through the sum

∑
j A(sj(x)). For j = k, all the x − d/c factors in

g(x) will cancel with the corresponding denominators in A(sk(x)). Furthermore,
by our discussion above, A(sk(x)) cannot have terms with numerator cx+ d (or a
multiple thereof). Thus, g(x)A(sk(x)) is not zero at x = x0. However, for j 6= k,
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there is no such cancelling of terms, and so g(x)A(sj(x)) is zero at x = x0. As a
result, f(x0) 6= 0, and so f(x), g(x) are relatively prime.

Finally, we consider the roots of f(x) − t g(x) = 0. Take σ ∈ G, and write
σ(x) = hi(sj(x)), with notation as above. Then,

f

g
(σ(x)) =

J∑
j=1

A(hi(sj(x)))

=
J∑
j=1

∏
h∈H

h(hi(sj(x)))

=
J∑
j=1

∏
h∈H

h(sj(x))

=
J∑
j=1

A(sj(x)) =
f

g
(x).

So, if f(x0)− t g(x0) = 0 for some t, x0, then also f(σ(x0))− t g(σ(x0)) = 0, for any
σ ∈ G. This concludes our proof. �

For our purposes, we must fine-tune the selection of these polynomials. In par-
ticular, we want polynomials with integer coefficients, as given in the following
corollary:

Corollary 6.2. For G ⊂ PGL(2,Q), G finite, there exist polynomials f(x), g(x)
in Z[x] such that C(f) = 1, `(f) |C(g), and f, g satisfy Theorem 6.1.

Proof. Let f, g be as in Theorem 6.1, with K as Q. So, f, g ∈ Q[x], and by
multiplying f and g by appropriate constants, we can assume f, g ∈ Z[x] and
C(f) = C(g) = 1. Multiply g by `(f), the leading coefficient of f , and we are
done. �

Our proof of Corollary 1.2 follows immediately:

Proof. Given G, let f(x), g(x) be as described in Corollary 6.2. Then, for α a root
of At(x) = f(x)− t g(x), we use Theorem 6.1 and Corollary 6.2 to conclude that ∑

At(α)=0

h(α) : t ∈ Q

 ⊂
{∑
σ∈G

h(σ(α)) : α ∈ Q
}
.

By Theorem 1.1, the first set is dense in [d,∞) (for some d), and thus so is the
second set. �

7. Examples

Let us first consider Zhang’s and Zagier’s set Λ2 = {h(α) + h(1 − α)}. Using
f(x) = x − x2 and g(x) = 1 (and At(x) = f(x) − t g(x)), we see that the set
{
∑
At(α)=0 h(α)} ⊂ Λ2, as if α is a root of At(x), so also is 1 − α. Theorem 1.1

guarantees that {
∑
At(α)=0 h(α)} is dense in [d,∞), so we need only calculate d.

To do so, we use m(t) (from (3.5)) and the methods of section 5.2 to compute

d = L0 = lim
n→∞

1
2n

2n∑
i=1

logm(βn,i),
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where the βn,i are as defined in section 4 (with β0 = b = 1). For this example,
m(t) can be explicitly calculated as m(t) = |t| for t ≤ −2 or t ≥ 1, m(t) = 1 for
0 ≤ t < 1, and m(t) = 1

2 +
√

1−4t
2 for −2 < t < 0. Using Maple, our d comes out to

be about 0.39678 . . . . Compare this to Zagier’s discovery that the first nontrivial
point in Λ2 is 1

2 log 1+
√

5
2 = 0.2406 . . . , and Doche’s proof in [4] that Λ2 is dense in

[0.2544 . . . ,∞].
Next, we consider the spectrum Λ3 = {h(α) + h(1 − 1

α ) + h( 1
1−α )}, as first

described in [6]. As with Λ2 above, this set is discrete near zero; we showed in [6]
that the first two values of Λ3 are 0 (for α = 1) and 0.4218 . . . (for α a root of
(x2−x+ 1)3− (x2−x)2 = 0.) The next two values are known to be 0.4336 . . . and
0.4380 . . . , as seen in [5, Chapter 7]. Using f(x) = x3 − 3x+ 1 and g(x) = x2 − x,
we get a limit point (with density beyond that point) of about 0.55 . . . . A better
limit point of 0.44 . . . is known to exist, as seen in [5], and can be achieved by using
(βn,i)2 instead of βn,i, and different polynomials for f and g in Section 4.

It’s interesting to note that both of these examples could have been approached
by way of Corollary 1.2. Zhang’s and Zagier’s spectrum Λ2 is produced by the
group generated by σ(x) = 1− x. Our own Λ3 comes from the group generated by
σ(x) = 1

1−x , and indeed we originally found the polynomials f(x) = x3 − 3x + 1
and g(x) = x2 − x by using the methods given in the proof of Theorem 6.1.

We’d also like to mention that many of the above examples and theorems (in
particular, Theorem 1.1) can be rewritten in terms of Mahler’s measure. For ex-
ample, if α has minimal polynomial p(x), then, using the fact that M is multi-
plicative, we have h(α) + h(1 − α) = 1

deg p logM(p(x)p(1 − x)). It’s easy to show
that p(x)p(1 − x) = R(x − x2) for some polynomial R in Z[x] of the same degree
as p, and so we have h(α) + h(1 − α) = 1

degR logM(R(x − x2)). This motivates
us to turn to a recent article by G. Rhin and C. Smyth [9], which gives a (not
necessarily sharp, but easily computed) positive lower bound for expressions of the
form 1

degR logM(R(T (x))), where T (x) is a fixed polynomial of at least two terms
and divisible by x, and where R(x) ranges over all irreducible polynomials. This
is easily extended to a lower bound for all polynomials R(x), thus giving a nice
extension of Zhang’s result in [15].

As another application of Corollary 1.2, let us consider a family of groups, each
of order six. Choose a pair of distinct rationals (a, b), let c = a2 − ab + b2, and
construct a group G6 generated by σ(x) = (ax − c)/(x − b) and τ(x) = c/x. It’s
not hard to show that σ and τ form a group of order six, and it’s also easy to
show that two polynomials that will satisfy the requirements of Theorem 6.1 are
f(x) = (x2 − (a+ b)x+ c)3 and g(x) = x(x − a)(x − b)(x − c/a)(x − c/b). Taking
the particular case of (a, b) = (3/2, 1/2), and using 43f(x) and 43236g(x) as our
polynomials, we get new f, g which will satisfy Corollary 6.2:

f(x) = (4x2 − 8x+ 7)3,

g(x) = 64x(2x− 3)(2x− 1)(6x− 7)(2x− 7).

We use Maple and equation (5.11) to get a limit point (with density beyond that)
of d = log(64) + 4.9206 · · · ≈ 9.08 . . . . This is certainly not an optimal value! On
the other hand, with (a, b) = (1, 0), we get the order-three group that produces Λ3

(discussed above) combined with τ(x) = 1/x in a semidirect product to give us a
new group of order six. Since h(x) = h(1/x), the spectrum of this new group is
simply 2Λ3.
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Finally, let us consider the polynomials f(x) = x4+2 and g(x) = x2. It’s not hard
to show that f(x)/g(x) = f(−x)/g(−x) = f(

√
2/x)/g(

√
2/x), and thus our At(x)

(defined, as always, as At(x) = f(x) − t g(x)) has roots {α,−α,
√

2/α,−
√

2/α}.
Using Maple again, we find that the set {h(α) + h(−α) + h(

√
2/α) + h(−

√
2/α)}

is dense beyond d = 0.69908 . . . , and since h(x) = h(−x) = h(1/x) for all x ∈ Q,
we have that {h(α) + h(α/

√
2) : α ∈ Q} is dense in [0.34954 . . . ,∞). A moment’s

thought about the minimal polynomials of α and α/
√

2 will convince us that the
minimal positive value in this spectrum is 1

2 log 2 = 0.34657 . . . . We thus conjecture
that our density point of 0.34954 . . . is best possible.
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54 (1995), 60–72. MR 96i:11129
8. V. Flammang, Two new points in the spectrum of the absolute Mahler measure of totally

positive algebraic integers, Math. Comp. 65 (1996), no. 213, 307–311. MR 96d:11124
9. G. Rhin and C. J. Smyth, On the Mahler measure of the composition of two polynomials,

Acta Arith. 79 (1997), no. 3, 239–247. MR 98b:11109
10. A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number,

Acta Arith. 24 (1973), 385–399. MR 50:12963; MR 51:8070
11. C. J. Smyth, On the measure of totally real algebraic integers, J. Austral. Math. Soc. (Series

A) 30 (1980), 137–149. MR 82j:12002a
12. , On the measure of totally real algebraic integers, II, Math. Comp. 37 (1981), no. 155,

205–208. MR 82j:12002b
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