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Abstract

How many irreducible polynomials have real roots which, when expressed as simple continued

fractions, all have common tails? We show how to identify all such polynomials (they have degree

at most six), and we establish connections to linear fractional transforms, Galois groups, and

some factoring techniques that date back hundreds of years.

In a recent paper [7] based on an undergraduate honors thesis, Alexandra Hobby and David Hobby

pointed out an interesting feature of the polynomial x3 + 6x2 + 9x+ 1. This function has three real

roots, and when we write them as continued fractions (using the standard notation as explained

later), we obtain

−3.5320888 . . . = [−4; 2, 7, 3, 2, 3, 1, 1, . . .]

−2.3472963 . . . = [−3; 1, 1, 1, 7, 3, 2, 3, 1, 1, . . .]

−0.1206147 . . . = [−1; 1, 7, 3, 2, 3, 1, 1, . . .].

Hobby and Hobby noted that all three continued fractions have “common tails,” and they asked how

many other polynomials have roots with this same behavior. Back in the mid 1800s, Serret [12, 13]

gave appropriate conditions for polynomials of degree 2 and 3 to have roots with common tails. In

their recent work, Hobby and Hobby found examples of such polynomials with degrees 4 and 6,

and they wondered if there were others. In this article we finish the problem: we prove definitively

that such polynomials can only be of degrees 2, 3, 4, or 6, and we describe how to identify all such

polynomials. But before we go any further, let us review some standard definitions and preliminary

theorems.

1 Preliminaries.

Recall that a simple continued fraction, typically called a continued fraction, is a number of the form

a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

,

where a0 is an integer and a1, a2, a3, . . . are positive integers. It is well known that a real number is

irrational if and only if the continued fraction expression is infinite (and in that case the expression

is unique). For more details on continued fractions, see [6]. We will use the standard notation of

[a0; a1, a2, a3, . . . ] to refer to the continued fraction above.

1



Polynomial Roots with Common Tails 2

We will say that two irrational numbers have common tails if their simple continued fraction

expansions are eventually identical (after allowing for a possible offset). Along these lines, we will

say that a polynomial has common tails if all its roots are distinct irrational real numbers with

common tails.

As will become clear in a moment, we also want to define linear fractional transforms, which

are functions of the form (ax + b)/(cx + d) such that ad − bc 6= 0. These functions form a group

under composition, and we will be interested in the particular group of such functions with integer

coefficients a, b, c, d satisfying ad − bc = ±1. If we map each such (ax + b)/(cx + d) to the matrix(
a b

c d

)
, then we find that this particular group of functions is isomorphic to the projective

group of matrices Γ = PGL(2,Z), which is often referred to as the extended modular group. A

particularly nice feature of this isomorphism is that composition of functions can be rewritten in

terms of multiplication of matrices. This correspondence allows us to use the function notation

(ax+ b)/(cx+ d) and the matrix notation

(
a b

c d

)
interchangeably, with the understanding that

(ax + b)/(cx + d) is the same function as (−ax − b)/(−cx − d), and so likewise we understand

that

(
a b

c d

)
is considered the same object as

(
−a −b
−c −d

)
in PGL(2,Z). We will use Γ and

PGL(2,Z) interchangeably to refer to the group of such objects (either functions or matrices) with

a, b, c, d integers and with determinant ad− bc = ±1.

So, why are we interested in linear fractional transforms? The following theorem reveals a very

useful connection between common tails and these particular linear fractional transforms in the

extended modular group Γ. It was proved by Serret [12, §16, pp. 34–35] in his popular algebra books

from the mid nineteenth century, by Hardy and Wright [6, §10.11, pp. 141–143] in the mid twentieth

century, and doubtless by many others.

Theorem 1 (Serret; Hardy and Wright). Two irrational numbers r1 and r2 have common tails if

and only if r2 = (ar1 + b)/(cr1 + d) with

(
a b

c d

)
an element of Γ = PGL(2,Z); that is, a, b, c, d

are integers such that ad− bc = ±1.

Many authors say that two such irrational numbers r1 and r2 from Theorem 1 are equivalent.

Theorem 1 lets us move from talking about “polynomials whose roots all have common tails” to

talking about “polynomials whose roots are related by elements of Γ = PGL(2,Z),” and so our next

task is to understand more about this extended modular group Γ.

2 The Extended Modular Group.

Although much has been written about this extended modular group Γ = PGL(2,Z) (see, for

example, [8] and [14]), we need only the following two results on Γ. Both of these results follow

immediately from theorems by Yılmaz Özgür and Şahin [15, Theorem 2.3] and Dresden [3]. (For

proofs, see [2].) Our first result limits the size of finite subgroups in Γ.

Theorem 2. Any finite nontrivial subgroup of Γ = PGL(2,Z) is of size two, three, four, or six.

The groups of size two are conjugate in Γ to either {x,−x} or {x, 1/x} or {x,−1/x}. All groups of

size three in Γ = PGL(2,Z) are conjugate in Γ to the cyclic group

G3 =

{
x,

−1

x+ 1
,
−x− 1

x

}
.
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Likewise, all groups of size four are conjugate in Γ to the dihedral group

G4 =

{
x,

1

x
, −x, −1

x

}
,

and all groups of size six are conjugate in Γ to the dihedral group

G6 =

{
x,

−1

x+ 1
,
−x− 1

x
,

1

x
,
−x
x+ 1

, −x− 1

}
.

We note in our definitions above that G6 contains G3. Our second result on the extended modular

group tells us more about this relationship.

Proposition 1. If a group of size six in Γ = PGL(2,Z) contains G3, then the group must be G6.

These results on the finite subgroups of Γ will assist us in identifying polynomials with common

tails, as we now show in the next section.

3 Polynomials with common tails.

Recall that Theorem 1 allows us to change our conversation from “polynomials whose roots all have

common tails” to “polynomials whose roots are related by elements of Γ = PGL(2,Z).” With this

in mind, given a polynomial f we define Γf to be the set of linear fractional transforms m(x) =

(ax+ b)/(cx+ d) in Γ that take some root ri of f to some root rj for some particular i and j. This

set Γf is clearly nonempty (as it always contains the element m(x) = x), and the following theorem

gives us a bit more.

Theorem 3. Suppose f of degree at least three is an irreducible polynomial with rational coefficients

and with real roots, all with common tails. Then, f is of degree 3, 4, or 6, and the set Γf both

permutes the roots of f and is a subgroup of Γ conjugate to G3, G4, or G6 respectively.

Proof. Given f(x) as stated, we label the roots {r1, r2, . . . , rn} where n ≥ 3 is the degree of f . With

Γf defined as above, we can now establish the following.

1. We claim that Γf has at least n elements. Since r1 has common tails with each distinct root

ri, by Theorem 1 there are maps that take r1 to each ri.

2. We claim that for (ax+ b)/(cx+ d) with integer coefficients and ad− bc 6= 0, the polynomial

g(x) = f((ax + b)/(cx + d)) · (cx + d)n has the same degree n as f . There are just two cases

to check. If c = 0, then a, d are both nonzero and so g(x) = f
(
a
dx+ b

d

)
· dn which clearly has

the same degree as f . If c 6= 0, then a a brief calculation shows that the coefficient of xn in

g(x) is f(a/c) · cn, and since f is irreducible of degree at least 3 then f(a/c) is nonzero and

hence g is indeed of degree n.

3. We claim that a linear fractional transform mij in Γf that takes some root ri to some root rj
must in fact take every root back to a root (that is to say, it must be a permutation on the

complete set of roots {r1, r2, . . . , rn}). If we write mij(x) = (ax+b)/(cx+d) and we recall that

it takes ri to rj , then f(mij(x)) · (cx+ d)n is a polynomial (still of degree n) with ri as a root.

Of course, f itself has ri as a root, so by the uniqueness of minimal polynomials we know that

f is a (nonzero) constant multiple of f(mij(x)) · (cx+ d)n. Thus, they have exactly the same
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roots, and hence mij takes each root r1, r2, . . . , rn back into that same collection of roots. But

mij is a linear fractional transform with determinant ±1 and hence it is invertible (in fact, its

inverse corresponds precisely to the matrix inverse of the corresponding matrix for mij) so mij

is a one-to-one map from {r1, r2, . . . , rn} back into itself, and hence is a permutation of that

set of roots.

4. We now claim that Γf is closed under composition. Suppose m and m′ are both in Γf , so both

act as permutations on the roots. Their composition is still a linear fractional transform and

is still a permutation on the roots, hence is still in Γf .

5. Next, we claim Γf has exactly n elements. Suppose m and m′ are both in Γf and both

take r1 to the same root ri. Then, m−1(m′(x)) takes r1 back to r1. We write m−1(m′(x)) as

(ax+b)/(cx+d), and since m−1(m′(r1)) equals r1, we get the equation (ar1+b)/(cr1+d) = r1.

This becomes cr21 + (d− a)r1− b = 0, and since r1 is algebraic of degree at least 3, we get that

c = 0, d−a = 0, and b = 0, which means (ax+b)/(cx+d) simplifies to (ax+0)/(0x+a) = ax/a.

This could be 1x/1 or (−1)x/(−1), but either way it reduces to the identity map x, and so

m−1(m′(x)) = x and thus m(x) = m′(x). Hence, the map (let’s call it m1i) that takes r1 to ri
is unique. Combined with step 1, we see that we have a bijection from the set {r1, . . . , rn} to

the set Γf by the map that takes ri to m1i, and so Γf has exactly n elements.

6. Finally, since Γf is a nonempty and finite subset of Γ (by step 5) that is closed under the

group operations, it is actually a subgroup of Γ and so by Theorem 2 it is conjugate to either

G3, G4, or G6 and hence has degree 3, 4, or 6, respectively; the same can be said about the

degree of f(x).

Example 1. Let us consider the polynomial f(x) = x3+6x2+9x+1 from the opening paragraph of

this article. Hobby and Hobby showed (by direct computation in [7]) that the map (3x+7)/(−x−2)

and its inverse (−2x − 7)/(x + 3) permute the roots and have associated determinant 1. Thanks

to Theorem 3, we can conclude that the complete set Γf of all such linear fractional transforms is

a group of size three, hence must be these two maps along with the identity. We also know from

Theorem 2 that Γf is conjugate to G3, and so there exists a σ ∈ Γ such that Γf = σ−1 ◦G3 ◦ σ, or

in other words, {
x,

3x+ 7

−x− 2
,
−2x− 7

x+ 3

}
= σ−1 ◦

{
x,
−1

x+ 1
,
−x− 1

x

}
◦ σ.

Although Theorem 2 is not constructive, it is a fairly simple task to find σ; if we write σ(x) =

(sx+ t)/(ux+ v), then we can look to solve

3x+ 7

−x− 2
= σ−1 ◦ −1

x+ 1
◦ σ =

−(st+ tu+ uv)x− (t2 + tv + v2)

(s2 + su+ u2)x+ (uv + sv + st)
. (1)

We can set the two expressions (s2 + su + u2) and −(t2 + tv + v2) equal to (plus or minus) the

corresponding entries in (3x+ 7)/(−x− 2). The second equality gives us t2 + tv + v2 = ±7, a type

of positive definite binary quadratic form (see [1] for details on binary quadratic forms). For our

purposes, we can rewrite this as (2t + v)2 + 3v2 = ±28 which becomes easy to solve. (A similar

method applies for s and u.) We find s = −1, t = −3, u = 0, v = 1 as one possible solution to (1)

and so σ(x) = −x− 3 is one such desired function.

As we now turn our attention from subgroups of Γ back to polynomials with common tails, we

know from Theorem 3 that we need only look at polynomials of degrees 2, 3, 4, or 6. The first two

cases were covered by Serret in the nineteenth century; we will review those results and then use
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them in our work on polynomials of degree 4 and 6. For the quartics, we will call upon a factoring

technique of Descartes from the seventeenth century, and then for the sextics we will bring in a bit

of invariant theory.

4 Serret’s work on quadratic polynomials.

Serret used what we call Theorem 1 to prove the following, which can be found in [12, §26, pp. 57–58].

Theorem 4 (Serret). Let f be an irreducible monic polynomial of degree two with rational coeffi-

cients and real roots. Then f has roots with common tails if and only if there exist rational P and

integers a, c with

f(x) = x2 + Px−
(
Pa

c
+
a2 ± 1

c2

)
and c|(a2 ± 1) (2)

The following examples illustrate how to use this theorem.

Example 2. We start with f(x) = x2 + (21/2)x + 9/2. By applying equation (2), we find that f

will have common tails if and only if we can find integer solutions to the indefinite binary quadratic

form 2a2 + 21ac + 9c2 = ∓2 such that c|(a2 ± 1). A quick search reveals that a = 191, c = −19 is

one such solution, with c|(a2 − 1).

Example 3. We continue with f(x) = x2+(21/2)x+9/4. This does not have common tails (the roots

are [−11; 1, 2, 1, 1, 3, 1, 9, 3, 1] and [−1; 1, 3, 1, 1, 3, 9]), but as we now show it takes some effort to prove

this with Theorem 4. If we attempt to apply equation (2), we get 9/4 = −((21/2)a/c+ (a2± 1)/c2)

with c|(a2 ± 1). The equation simplifies to 4a2 + 42ac+ 9c2 = ∓4, and using the standard methods

for solving binary quadratic forms (as seen in [4, Chapter 4]) we discover that 4a2 +42ac+9c2 = −4

has no integer solutions but 4a2 + 42ac+ 9c2 = 4 has infinitely many solutions ±(ak, ck), where

(ak, ck) = (1, 0) ·
(
−7 32

−72 329

)k
, k ∈ Z.

It remains to show that ck 6 | (a2k − 1) for all k. By carefully analyzing the powers of the matrix

above, we can show that if 2i is the largest power of 2 that divides ck, then ak ≡ 1± (2i−2 + 2i−1)

mod 2i. This implies a2k − 1 ≡ 2i−1 mod 2i and so since 2i divides ck and not a2k − 1, we have

ck 6 | (a2k − 1). Hence, there are no solutions to (2) and so Theorem 4 tells us this polynomial does

not have common tails.

Suffice it to say, Theorem 4 is rather difficult to use. Fortunately, the situation is much easier

for polynomials of higher degree, as we show next.

5 Serret’s work on cubic polynomials.

This is the second case considered by Serret. To begin with, given a cubic x3 + Px2 + Qx + R we

recall that its discriminant ∆ can be written as

∆ = −(4Q3 + 27R2) + 18PQR+ P 2Q2 − 4P 3R. (3)
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With this in mind, and so long as ∆ 6= 0 (which is the same as saying that the polynomial has no

repeated roots), Serret [13, §511, p. 468] defined

a =

√
∆− (9R− PQ)

2
√

∆
,

c =
6Q− 2P 2

2
√

∆
,

b =
−(a2 − a+ 1)

c
,

d = 1− a.
(4)

Serret went on to show that m(x) = (ax+ b)/(cx+d) is of order three under composition, permutes

the roots of the cubic, and has associated determinant ad − bc = 1. Thus, thanks to Theorem 1,

Serret concluded the following.

Theorem 5 (Serret). Given a polynomial x3 +Px2 +Qx+R with real coefficients and three distinct

irrational roots, the roots will have common tails if and only if the four quantities a, b, c, d defined

in (4) are all integers.

It is typical (but not required) to apply Serret’s theorems to cubics with rational coefficients

P,Q,R. However, the theorem still holds for irrational coefficients, a fact that we will exploit a bit

later in Section 8 on sextics.

Example 4. We return to the polynomial f(x) = x3+6x2+9x+1 as seen in the opening paragraph

of this article. Using (4) we get a, b, c, d equal to 3, 7,−1,−2, respectively, and so the roots are

permuted by (3x+ 7)/(−x− 2); thus we recover the same map discovered by Hobby and Hobby in

Example 1. Since a, b, c, d are all integers, Theorem 5 confirms that the roots all have common tails.

6 Cubics, Quartics, and Sextics.

Suppose we have a cubic polynomial with roots permuted by G3; that is to say, if r is a root, so also

are −1/(r + 1) and (−r − 1)/r. This would be the polynomial(
x− r

)(
x− −1

r + 1

)(
x− −r − 1

r

)
.

If we expand and carefully group the terms, we obtain

x3 −Ax2 − (A+ 3)x− 1, such that A =
r3 − 3r − 1

r(r + 1)
.

With this in mind, we define p3(x;A) = x3 − Ax2 − (A + 3)x − 1, and thanks to our construction,

any monic cubic polynomial whose roots are permuted by G3 must equal p3(x;A) for some A.

Furthermore, if A is chosen such that p3(x;A) has real roots and is irreducible over Q, then p3(x;A)

has common tails.

Likewise, we can describe all monic quartic polynomials with roots permuted by G4 by starting

with (
x− r

)(
x− 1

r

)(
x− (−r)

)(
x− −1

r

)
and expanding to obtain

x4 − 2Ax2 + 1, such that 2A =
r4 + 1

r2
,

and so it is natural to define p4(x;A) = x4 − 2Ax2 + 1.
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Finally, we can apply the same method with G6 and we are led to the polynomial

p6(x;A) = x6 + 3x5 −Ax4 − (5 + 2A)x3 −Ax2 + 3x+ 1,

such that A = (1 + 3r − 5r3 + 3r5 + r6)/(r2(1 + r)2).

We have noted that any monic cubic polynomial whose roots are permuted by G3 must equal

p3(x;A) for some A. The same applies to G4 and G6 with the polynomials p4(x;A) and p6(x;A).

Surprisingly, every nonquadratic polynomial with common tails is related to p3, p4 or p6, as the

following theorem illustrates.

Theorem 6. Suppose f(x) of degree n = 3, 4, or 6 is an irreducible polynomial with rational coeffi-

cients and with real roots, all with common tails. Then there exists A ∈ Q and σ ∈ Γ such that f(x)

is an appropriate multiple of pn(σ(x);A).

The phrase “appropriate multiple” in the statement of the theorem is necessary as σ(x) has the

form (sx+ t)/(ux+v) and so we would need to multiply pn(σ(x);A) by (ux+v)n to assure ourselves

that we actually have a polynomial on our hands.

Before proving Theorem 6, it might first be helpful to revisit a familiar polynomial.

Example 5. For f(x) = x3 + 6x2 + 9x + 1 from Examples 1 and 4, we can verify that Theorem

6 applies in this case by writing f(x) = −p3(σ(x);A) for σ(x) = −x − 3 and A = −3. This is, of

course, the same σ(x) that we saw in Example 1.

Proof of Theorem 6. Let n = 3, 4, or 6 be the degree of f , and let Γf be the associated subgroup of

Γ from Theorem 3. We know from that theorem that Γf is conjugate in Γ to Gn; let σ ∈ Γ be that

element such that Γf = σ−1 ·Gn · σ. (This is the same construction as we saw in Example 1.) Let

X = {r1, r2, . . . , rn} be the solution set of f(x). Obviously, σ ◦X is the solution set for f(σ−1(x)).

Now, apply Gn to σ ◦X with Gn = σ ◦Γf ◦σ−1 and we get Gn ◦σ ◦X = σ ◦Γf ◦X. But Γf permutes

the roots of f(x), so Γf ◦X = X. Then Gn ◦σ ◦X = σ ◦X. This means Gn also permutes the roots

of f(σ−1(x)). By our discussion above concerning the construction of the polynomials p3, p4, and

p6, this means f(σ−1(x)) must have the same roots as pn(x;A) for some A. This means f(x) has

the same roots as pn(σ(x);A), and so f(x) is an appropriate multiple of pn(σ(x);A), as desired.

7 Quartics with Common Tails.

Serret made the following observation on quadratics in [12, §26, p. 59], right after what we call

Theorem 4:

Il faut remarquer que les racines de l’équation (2) donnent lieu à des fractions continues

qui se terminent par les mêmes quotients, lors même que la quantité P serait irrationnelle.

which translates to

Note that the roots of equation (2) give rise to continued fractions that end in the same

quotients, even though the quantity P is irrational.
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Here’s a particularly nice application of this fact. The quartic polynomial f(x) = x4−4x2+1 factors

as

x4 − 4x2 + 1 = (x2 +
√

2x− 1)(x2 −
√

2x− 1) (5)

and each of those quadratic factors fits the format of equation (2) in Theorem 4, using P = ±
√

2,

a = 0, and c = 1. Hence, each factor has roots with common tails, but note that each root of one

factor is the negative of a root of the other factor, and so all four roots must have common tails. A

quick computation of our four roots as continued fractions confirms this:

−1.93185 . . . = [−2; 14, 1, 2, 15, 10, 1, 18, 1, 1, 21, . . .];

−0.517638 . . . = [−1; 2, 13, 1, 2, 15, 10, 1, 18, 1, 1, 21, . . .];

0.517638 . . . = [0; 1, 1, 13, 1, 2, 15, 10, 1, 18, 1, 1, 21, . . .];

1.93185 . . . = [1; 1, 13, 1, 2, 15, 10, 1, 18, 1, 1, 21, . . .].

Of course, to apply Serret’s Theorem 4 to quartics in this manner we need to first guarantee that

we can always find a factorization like equation (5), and as it turns out an old method of Descartes

[11, p. 209] from 1637 allows us to do exactly that. To this end, we set up the resolvent cubic of

a quartic, as follows. Given f(x) = x4 + Px3 + Qx2 + Rx + S, we first write g(x) = f(x − P/4),

known as the depressed quartic as it has no x3 term. Then, given this g(x) = x4 + a2x
2 + a1x+ a0,

we define the resolvent cubic to be h(y) = y3 + 2a2y
2 + (a22 − 4a0)y − a21. For u a nonzero root of

this resolvent cubic, Descartes gave the following factorization for the original quartic f(x):

(x2 + (P/2 +
√
u)x+ (s+ t

√
u)) · (x2 + (P/2−

√
u)x+ (s− t

√
u)), (6)

where the numbers s and t are defined as

s =
Q+ u

2
− P 2

8
, t =

sP −R
2u

. (7)

With this, we can now establish the following.

Theorem 7. Let f be an irreducible quartic polynomial with rational coefficients and four real roots.

Then f has common tails if and only if the following two statements hold:

1. The resolvent cubic has three distinct rational roots.

2. For each nonzero root u of the resolvent cubic, the values s, t from (7) obey the following: if we

write t = −a/c for a,c relatively prime integers, then c divides a2±1 and s = tP/2−(a2±1)/c2

for some particular choice of the ± sign.

We note that this is much easier than Serret’s Theorem 4 for quadratics, because in that theorem

(as seen in Example 2 and 3) we had to search for the integers a and c (or prove they didn’t exist)

either by brute force or through the theory of binary quadratic forms. In this Theorem 7 for quartics,

our test for common tails uses entirely elementary methods: calculate the resolvent cubic, use the

rational root test to find any nonzero rational roots u, then use (7) to find the rational numbers s

and t, and then read −a and c from the numerator and denominator of t. Perhaps an example will

help illustrate this technique.

Example 6. Consider f(x) = x4 + 2x3 − 19x2 − 20x − 5. The depressed quartic is f(x − 1/2) =

x4− (41/2)x2 + 1/16, with resolvent cubic y3− 41y2 + 420y = y(y− 20)(y− 21). If we take the first

nonzero root u = 20 of the resolvent cubic, Descartes’s method lets us factor f(x) as(
x2 + (1 +

√
20)x+

√
20/2

)
·
(
x2 + (1−

√
20)x−

√
20/2

)
,
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with s = 0 and t = 1/2. We choose a = −1, c = 2 and we verify that c|a2 + 1 and that s =

tP/2− (a2 + 1)/c2 with P = 2 and using the + in the a2 ± 1 terms. Next, using the other nonzero

root u = 21, Descartes’s method now gives us(
x2 + (1 +

√
21)x+ (1/2 +

√
21/2)

)
·
(
x2 + (1−

√
21)x+ (1/2−

√
21/2)

)
,

with s = 1/2 and t = 1/2. We again choose a = −1, c = 2, and we verify that c|a2 − 1 and

s = tP/2− (a2 − 1)/c2, this time using the negative sign in the a2 ± 1 terms. We conclude that our

polynomial f(x) does indeed have roots with common tails.

Interestingly, we can write f(x) as p4(2x+ 1; 41)/16, which does not satisfy Theorem 6, and also

as p4((x+ 1)/x; 11/10) · (−5x4), which does.

Before proving our Theorem 7, we need to establish the following statement about polynomials

of degree 4 with common tails.

Proposition 2. Suppose f is an irreducible quartic polynomial with rational coefficients and real

roots, all with common tails. Then the Galois group of f(x) is dihedral of size 4.

Proof. By Theorem 6, we know f(x) is an appropriate multiple of p4(σ(x);A) for some σ and A.

Since σ ∈ Γ is invertible, the splitting fields for p4(x;A) and p4(σ(x);A) are actually the same (the

inclusions in both directions are easy to see), and hence their Galois groups are the same. Fortunately,

the Galois group for p4(x;A) is easy to calculate. The four roots are 1
2 (±
√

2A+ 2±
√

2A− 2), and

so its splitting field is Q(
√

2A+ 2,
√

2A− 2), and it is a standard exercise in many algebra textbooks

([5, p. 548] or [11, p. 204]) to show that the Galois group for this kind of field is a dihedral group of

size 4.

We are now ready to prove our theorem.

Proof of Theorem 7. First, suppose our quartic f has common tails. By Proposition 2 the Galois

group of f is dihedral of size 4, and so by [9, Theorem 1] the resolvent cubic of f must have three

distinct rational roots.

(We have to be a bit careful here; the resolvent cubic in [9] differs slightly from the “Descartes”

resolvent cubic we are using, in that the roots of one cubic are shifted, by the constant a2, from the

roots of the other cubic. However, we are only interested in whether or not we have three distinct

rational roots and so this slight difference is immaterial to us.)

For u a nonzero root of that resolvent cubic, we consider the first factor in the expression (6):

x2 + (P/2 +
√
u)x+ (s+ t

√
u). (8)

Since f(x) has common tails, then so also does (8). As we mentioned earlier, Serret observed that

his derivation of (2) from Theorem 1 worked equally well for a quadratic with irrational coefficients,

and so given this we must have P ′, a, c with c|(a2 ± 1) and

x2 + P ′x−
(
P ′a

c
+
a2 ± 1

c2

)
= x2 + (P/2 +

√
u)x+ (s+ t

√
u).

Comparing the linear terms gives us P ′ = P/2 +
√
u, and so from the constant terms we have

−
((

P

2
+
√
u

)(a
c

)
+
a2 ± 1

c2

)
= s+ t

√
u. (9)
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Now, f being irreducible means (8) must have irrational coefficients and so in particular
√
u /∈ Q.

Thus we can compare the coefficients of
√
u in (9) which gives us t = −a/c and thus s = tP/2 −

(a2 ± 1)/c2 as desired.

Conversely, suppose f satisfies conditions 1 and 2 of the theorem. From condition 2, it’s easy

to show (by brute force if necessary) that the roots of each quadratic in (6) are permuted by

m(x) =
ax− a2±1

c

cx− a
with the appropriate choice of sign, and hence by Theorem 1 each quadratic in

(6) has common tails. Since condition 1 tells us the resolvent cubic has three distinct roots, at least

two of them are nonzero (let’s call them u1 and u2), and each of these give us a distinct and separate

factorization in (6). If the first factorization (using u1) in (6) gives us two quadratics with roots r1, r2
and roots r3, r4, then the second factorization (using u2 in place of u1) will give us two quadratics

with either r1, r3 and r2, r4 as roots, or r1, r4 and r2, r3 as roots. From our first factorization (with

u1) we have that r1, r2 have common tails as do r3, r4. From the second factorization (with u2) we

have that either r1, r3 have common tails or r1, r4 have common tails, but in either case we conclude

that all four roots r1, r2, r3, r4 of our original quartic f have common tails.

8 Sextics with common tails

We now start working on our theorem to identify sextics with common tails. This will require a few

definitions. First, given a monic polynomial with roots {r1, r2, . . . } we recall that its discriminant

∆ is defined as

∆ =
∏
i<j

(ri − rj)2. (10)

While this can always be expressed in terms of the polynomial’s coefficients (as seen in (3) for the

cubic case), it is not practical to do so for the sextic. In all cases, the discriminant is positive so

long as the roots are distinct real numbers.

Next, given an element m of order three in Γ = PGL(2,Z), we know from applying Theorem 2

that there exists σm ∈ Γ such that the group {x,m(x),m2(x)} equals σ−1m ·G3 · σm. We recall that

although Theorem 2 is not constructive, it is a fairly simple task to use the technique from Example

1 to find such a conjugator element σm in Γ. With this in mind, we are ready for our final theorem.

Theorem 8. Given a monic irreducible sextic polynomial f with rational coefficients and real roots,

it has common tails if and only if the following are true.

1. The sextic f factors over Q(
√

∆) into two monic cubics f1 and f2.

2. At least one of the cubics f1 and f2 satisfies the conditions of Theorem 5; in particular, the

cubic has common tails, and the values a, b, c, and d in (4) are all integers.

3. For m(x) the order-three transform (ax + b)/(cx + d) with a, b, c, d from part 2, and for

σm(x) ∈ Γ a conjugator as defined above, the numerator of the rational polynomial f(σ−1m (x))

is palindromic.

Before diving into the proof of Theorem 8, it might be instructive to work through an example.

Example 7. We begin with the monic polynomial

f(x) =
(
735x6 − 735x5 − 203x4 + 515x3 − 239x2 + 45x− 3

)
/735,
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which factors over Q(
√

∆) = Q(
√

345) into the two monic cubics

f1(x) = x3 +
−15 +

√
345

30
x2 − 3 +

√
345

42
x +

10 +
√

345

245
,

f2(x) = x3 +
−15−

√
345

30
x2 − 3−

√
345

42
x +

10−
√

345

245
.

Both cubics satisfy the conditions of Theorem 5 with a, b, c, d equal to −2, 1,−7, 3, respectively, and

so with m(x) equal to (−2x+ 1)/(−7x+ 3) we now wish to find a function σm such that

m(x) = (−2x+ 1)/(−7x+ 3) = σ−1m (x) ◦ −1/(x+ 1) ◦ σm(x).

We use the same technique as in Example 1 to find that σm(x) = (3x − 1)/(−x) meets our needs.

We note that

f(σ−1m (x)) =
3x6 + 9x5 − 31x4 − 77x3 − 31x2 + 9x+ 3

−735(x+ 3)6
,

which does indeed have a palindromic numerator. We conclude that this polynomial has six roots

with common tails, and a quick calculation confirms this:

−0.866885 . . . = [−1; 7, 1, 1, 19, 1, 5, 2, 4, 1, 1, 721, 1, 1, 3, . . .];

0.162508 . . . = [0; 6, 6, 1, 1, 19, 1, 5, 2, 4, 1, 1, 721, 1, 1, 3, . . .];

0.301468 . . . = [0; 3, 3, 6, 1, 1, 19, 1, 5, 2, 4, 1, 1, 721, 1, 1, 3, . . .];

0.362418 . . . = [0; 2, 1, 3, 6, 1, 1, 19, 1, 5, 2, 4, 1, 1, 721, 1, 1, 3, . . .];

0.446278 . . . = [0; 2, 4, 6, 1, 1, 19, 1, 5, 2, 4, 1, 1, 721, 1, 1, 3, . . .];

0.594213 . . . = [0; 1, 1, 2, 6, 1, 1, 19, 1, 5, 2, 4, 1, 1, 721, 1, 1, 3, . . .].

We can also verify that Theorem 6 applies to f(x) now that we know it has common tails, and we

would like to use σm(x) = (3x − 1)/(−x) from earlier in this example. A quick calculation reveals

the following satisfying formula:

f(x) = p6

(
3x− 1

−x
; 31/3

)
· (−x6/245).

We are now ready for our proof.

Proof of Theorem 8. To begin, we suppose f is a monic irreducible sextic polynomial with rational

coefficients and six common tails. We will prove that this implies parts 1, 2, and 3 of our theorem.

By Theorem 6, f(x) is an appropriate multiple of p6(σ(x);A) for some σ ∈ Γ and some rational A.

To be precise, there is some σ(x) = (sx + t)/(ux + v) in Γ, some rational A, and some rational B

such that

f(x) = p6(σ(x);A) · (ux+ v)6 ·B, (11)

where the constant B is chosen to make the right-hand side of (11) monic. Now, p6(x;A) has two

interesting properties. First, the discriminant of p6(x;A) is ∆ = 26(A + 6)4(A − 3/4)3, which can

be verified by using (10) with the six roots given by having G6 act on a single root r. And second,

p6(x;A) factors over Q(
√

∆) = Q(
√
A− 3/4) as

p6(x;A) = p3(x;−3/2 +
√
A− 3/4) · p3(x;−3/2−

√
A− 3/4).

Surprisingly, we can say almost exactly the same about f . First, since the discriminant of a poly-

nomial is invariant under linear fractional transforms (sx+ t)/(ux+ v) with sv − tu = ±1 (see [10,

Theorem 2.39]), the discriminant of f from (11) is the same as the discriminant for p6(x;A), namely,

∆ = 26(A+ 6)4(A− 3/4)3. Second, thanks to the factorization of p6(x;A) over Q(
√
A− 3/4) given
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above, we can apply it to the right-hand side of (11) to obtain f(x) = f1(x) · f2(x), with

f1(x) = p3(σ(x);−3/2 +
√
A− 3/4) · (ux+ v)3 ·B1

f1(x) = p3(σ(x);−3/2−
√
A− 3/4) · (ux+ v)3 ·B2,

(12)

where B1 and B2 are chosen so as to make the right-hand sides of (12) into monic polynomials.

These two monic polynomials f1 and f2 have coefficients in Q(
√

∆) = Q(
√
A− 3/4), and so this

satisfies part 1 of our theorem.

For part 2, we know that since f1 and f2 are factors of the sextic f , they each are (monic,

by definition) cubics with common tails and thus must satisfy the conditions of Theorem 5. For

part 3, we let m(x) = (ax+ b)/(cx+ d) be the linear fractional transform with coefficients a, b, c, d

from (4) and Theorem 5 for the polynomial f1, and we let σm be an element in Γ (thanks to

Theorem 2) such that {x,m(x),m2(x)} = σ−1m ◦ G3 ◦ σm. Now, we know m(x) and m2(x) are in

Γf1 which means they’re also in Γf (we are using the definition of Γf from Section 3). This means

σ−1m ◦ G3 ◦ σm is in Γf , which means σm ◦ Γf ◦ σ−1m contains G3, and so thanks to Proposition 1

we have σm ◦ Γf ◦ σ−1m = G6 which in particular contains 1/x. Now, since Γf permutes the roots

of f(x), we have that G6 = σm ◦ Γf ◦ σ−1m permutes the roots of f(σ−1m (x)) and since 1/x is one of

those permutations, then the numerator of f(σ−1m (x)) must be palindromic.

For the other direction, suppose f is a monic irreducible sextic with rational coefficients satisfying

parts 1, 2, and 3 given in the theorem. We know at least one of the monic cubic factors (call it f1)

has three roots r1, r2, r3 with common tails by part 2, with appropriate map m(x) = (ax+b)/(cx+d)

with a, b, c, d derived from the coefficients of f1(x) as seen in (4). We now show that the other factor

(call it f2 with roots r4, r5, r6) produces the same values a, b, c, d from (4) and hence has common

tails as well. From our definition of the discriminant in (10), we know
√

∆ is in the splitting field for

f(x), and
√

∆ 6∈ Q, so there exists an element φ in the Galois group of f such that φ(
√

∆) = −
√

∆.

We claim that φ applied to the coefficients of f1 (we write this as fφ1 ) equals f2. We know f1(r1) = 0,

which means φ(f1(r1)) = 0 which becomes fφ1 (φ(r1)) = 0, and so (since φ(r1) is still a root of f(x))

the monic cubic fφ1 is still a factor of f but it’s not f1, so by the uniqueness of minimal polynomials

it must be f2. Now we know f2 = fφ1 , so the values in (4) from the coefficients of f2 must be

φ(a), φ(b), φ(c), φ(d) with a, b, c, d from the coefficients of f1. Of course, these values a, b, c, d are

integers, and hence φ(a), φ(b), φ(c), φ(d) equal a, b, c, d and so our roots r4, r5, r6 of f2 have common

tails as well.

Turning our attention to f(σ−1m (x)), its roots are σm(r1), . . . , σm(r6) and since f(σ−1m (x)) is

palindromic these roots are permuted by 1/x, and since f is irreducible none of these roots are fixed

by 1/x. This means at least one element of {σm(r1), σm(r2), σm(r3)} has common tails with at least

one element of {σm(r4), σm(r5), σm(r6)}, and since σm is in Γ = PGL(2,Z), then by Theorem 1

we can say the same about {r1, r2, r3} and {r4, r5, r6}. We conclude that all six roots have common

tails.

9 Conclusion.

We have only scratched the surface of what can be discovered in the topic of polynomials with roots

with common tails! For example, suppose we were to use a more general definition of continued

fractions, perhaps of the form

b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · ·

.
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Would this give us a larger class of polynomials with roots with common tails?
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