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We will define all these numbers in a moment, but first let us write down some
convolution formulas and see if any interesting patterns appear. We start with
this well-known convolution formula [7] for the Fibonacci and Lucas numbers,

n∑
i=0

FiLn−i = (n+ 1)Fn. (1)

The Pell and Pell-Lucas numbers Pn, Qn from Koshy’s book [6] satisfy the some-
what similar equation

n−1∑
i=1

PiQn−i =
1

2
(n− 1)Pn. (2)

As for the Padovan and Perrin numbers An and En [9, 11, 13], we have

n∑
i=0

AiEn−i = (n+ 5)An − En+2. (3)

Finally, we have this unusual identity from Komatsu [5, Theorem 1] for the
Tribonacci numbers Tn,

n−3∑
i=0

Ti (Tn−i + Tn−2−i + 2Tn−3−i) = (n− 2)Tn−1 − Tn−2. (4)
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Although it might seem difficult to find a pattern in equations (1), (2), (3),
and (4), there is indeed one single general convolution formula that holds for all
the Fibonacci, Pell, Padovan, and Tribonacci numbers (and more), so long as
we: choose the right initial values for our first sequence, define an appropriate
companion sequence, and adjust the limits on the summation. The general
formula will be

n−1∑
i=0

FiLn−i = (n− 1)Fn, (5)

where the numbers Fn represent any Fibonacci-type sequence such as the Fi-
bonacci, Pell, Padovan, Tribonacci, etc., and likewise Ln represents its com-
panion Lucas-type sequence; in equations (1), (2), and (3) that would be the
Lucas, Pell-Lucas, and Perrin sequences, and in (4) it would be the numbers
Tn + Tn−2 + 2Tn−3. This universal convolution formula will produce equations
(1), (2), (3), and (4), along with innumerable others. But before we formally
state and prove our theorem, let us establish some definitions and provide some
background material to motivate our subsequent arguments.

1 Definitions and Background

1.1 Fibonacci and Lucas numbers.

We recall that the Fibonacci numbers Fn are commonly defined as F0 = 0 and
F1 = 1, with recurrence relation

Fn = Fn−1 + Fn−2 for n ≥ 2, (6)

giving us the sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . . The closely-related Lucas num-
bers Ln have the same recurrence relation

Ln = Ln−1 + Ln−2 for n ≥ 2 (7)

as the Fibonaccis, but with the different starting values L0 = 2 and L1 = 1. This
gives us the sequence 2, 1, 3, 4, 7, 11, 18, 29, . . . . For a deep and comprehensive
review of these two sequences, we direct the reader to Koshy’s book [7].

For a different approach to the Lucas numbers, we consider the elegant Binet
formula involving the two roots of x2 − x− 1,

Ln =

(
1 +
√

5

2

)n

+

(
1−
√

5

2

)n

. (8)

It is rather surprising that this expression actually produces the Lucas numbers.
Koshy [7, Chapter 5] gives a fairly standard induction proof, and Benjamin and
Quinn [1, Identity 241] provide a delightful proof via probabilistic tilings.
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1.2 Generating Functions.

For a different approach to the Fibonacci numbers, we consider the series

x

1− x− x2
= x+ x2 + 2x3 + 3x4 + 5x5 + 8x6 + · · · =

∞∑
n=0

Fnx
n. (9)

It is rather surprising that this series actually has the Fibonacci numbers as
coefficients, so let us spend a moment to convince ourselves of this. If we
multiply the sum on the far right of equation (9) by (1 − x − x2) and then
distribute, we have

(1− x− x2)

∞∑
n=0

Fnx
n =

∞∑
n=0

Fnx
n −

∞∑
n=0

Fnx
n+1 −

∞∑
n=0

Fnx
n+2, (10)

and if we now re-index the second and third sum on the right we have

(1− x− x2)

∞∑
n=0

Fnx
n =

∞∑
n=0

Fnx
n −

∞∑
n=1

Fn−1x
n −

∞∑
n=2

Fn−2x
n (11)

= F0 + F1x− F0x+

∞∑
n=2

(Fn − Fn−1 − Fn−2)xn

= 0 + 1x− 0x+

∞∑
n=2

( 0 )xn = x, (12)

where that last line follows from our initial values F0 = 0 and F1 = 1 and our
recurrence relation (6) for n ≥ 2. If we divide both sides by (1 − x − x2) we
obtain our formula (9), as desired.

Of course, what we are doing here is re-discovering the concept of generating
functions, which are functions like x/(1 − x − x2) whose series expansion has
coefficients of interest. To be precise, we would say that x/(1 − x − x2) is a
generating function for the Fibonacci numbers since the expansion of x/(1 −
x − x2) in equation (9) generates the Fibonaccis as coefficients. Likewise, it
is not hard to show that (2 − x)/(1 − x − x2) is a generating function for the
Lucas numbers. We do not concern ourselves with issues of convergence for
these power series; we simply use these generating functions as representations
of formal power series that we can then multiply, integrate, or differentiate
in order to prove various identities. For example, we can use them to prove
equation (1) on the convolution of the Fibonacci and Lucas numbers, and it
is worth our while to sketch out this technique as we will be using the same
method in greater generality a bit later when we prove Theorem 1.

On the one hand, we can multiply our two power series as follows,(
x

1− x− x2

)(
2− x

1− x− x2

)
=

( ∞∑
n=0

Fnx
n

)( ∞∑
n=0

Lnx
n

)
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=

∞∑
n=0

(
FnL0 + Fn−1L1 + · · ·+ F0Ln

)
xn,

and on the other hand, with some work we can show that(
x

1− x− x2

)(
2− x

1− x− x2

)
=

d

dx

(
x2

1− x− x2

)
=

d

dx

( ∞∑
n=0

Fnx
n+1

)
=

∞∑
n=0

(n+ 1)Fnx
n

(we leave the details to the reader) and so by comparing the coefficients of the
sums on the right of the above equations, we have

FnL0 + Fn−1L1 + · · ·+ F0Ln = (n+ 1)Fn.

This is the technique that we will use in what follows, and the truly surprising
part is that this procedure with generating functions will apply not just to the
Fibonacci and Lucas numbers but also to all the other sequences discussed at
the beginning of this article. For a deep and comprehensive study of generating
functions, we direct the reader to Wilf’s book [14].

1.3 Pell, Padovan, Tribonacci, and more.

Moving on to the other sequences mentioned in the introduction, we note that
Koshy [6] defined the Pell numbers Pn as having initial values P1 = 1 and
P2 = 2, and then satisfying the recurrence relation

Pn = 2Pn−1 + Pn−2. (13)

This sequence, beginning at n = 1, is 1, 2, 5, 12, 29, 70, . . . . Koshy defined the
Pell-Lucas numbers Qn to satisfy the same recurrence as the Pell numbers but
with different initial values Q1 = 1 and Q2 = 3. This sequence, again starting
at n = 1, is 1, 3, 7, 17, 41, 99, . . . .

Stewart [11] defined the Padovan and Perrin numbers An and En by the
recurrences

An = An−2 +An−3 and En = En−2 + En−3, (14)

with initial values A0 = A1 = A2 = 1 and E0 = 3, E1 = 0, E2 = 2. These
sequences, starting at n = 0, are 1, 1, 1, 2, 2, 3, 4, . . . and 3, 0, 2, 3, 2, 5, 5, . . . re-
spectively.

For the Tribonacci numbers, Komatsu [5] defines them in the standard way
as satisfying the recurrence relation

Tn = Tn−1 + Tn−2 + Tn−3 (15)

with initial values T0 = 0, T1 = 1, and T2 = 1, and so starting at n = 0 we have
0, 1, 1, 2, 4, 7, 13, . . . . If we set

Un = Tn + Tn−2 + 2Tn−3 for n ≥ 3, (16)
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then Komatsu’s unusual convolution formula (4) becomes

n−3∑
i=0

Ti Un−i = (n− 2)Tn−1 − Tn−2. (17)

From our definition of Un in (16), we see that it has “initial” values U3 =
3, U4 = 7, and U5 = 11, and that Un satisfies the same recurrence relation as
the Tribonaccis in (15),

Un = Un−1 + Un−2 + Un−3. (18)

From this we can work backwards and define U2 = 1, and then U1 = 3. This
gives us the sequence 3, 1, 3, 7, 11, 21, . . . for Un starting at n = 1.

1.4 Newton’s Identities.

Speaking of Tribonacci numbers, Yilmaz and Taskara [15] defined the Tribonacci-
Lucas numbers Wn as

Wn = (θ1)n + (θ2)n + (θ3)n, (19)

where θ1, θ2, and θ3 are the three solutions to x3−x2−x−1 = 0. This reminds
us of the Binet formula (8) for the “original” Lucas numbers Ln. It is rather
surprising that the definition of Wn in (19) produces integer values; it is perhaps
even more surprising to learn that Wn = Un+1 with Un from equations (16) and
(17). It is worth our while to verify this, as we will be using this same idea in
greater generality a bit later when we define the Lucas-type numbers Ln.

Since θ1, θ2, and θ3 are the three roots of x3 − x2 − x − 1, then this means
that

x3 − x2 − x− 1 = (x− θ1)(x− θ2)(x− θ3) (20)

= x3 − (θ1 + θ2 + θ3)x2

+ (θ1θ2 + θ2θ3 + θ3θ1)x− (θ1θ2θ3), (21)

and so without ever calculating the values of θ1, θ2, or θ3 we can simply compare
the coefficients in the above equations to see that

θ1 + θ2 + θ3 = 1

θ1θ2 + θ2θ3 + θ3θ1 = −1

θ1θ2θ3 = 1

and hence W1 = 1. For the value of W2, we note that

(θ1)2 + (θ2)2 + (θ3)2 = (θ + θ2 + θ3)2 − 2(θ1θ2 + θ2θ3 + θ3θ1) (22)

= (1)2 − 2(−1) = 3 (23)

and so W2 = 3.
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If we now wanted to calculate W3, we could note that since each θi is a root
of x3 − x2 − x− 1 then each θi satisfies

(θi)
3 = (θi)

2 + (θi)
1 + 1,

and so if we sum the above equation from i = 1 to 3 we obtain

W3 = W2 +W1 + 3,

telling us that W3 = 3 + 1 + 3 = 7. Of course, what we are doing here is
re-discovering Newton’s identities, which state that “power sums” like Wn =
(θ1)n + (θ2)n + (θ3)n can always be written in terms of the coefficients of the
polynomial x3−x2−x−1 and the power sums of lesser degree, as seen above. To
be precise, here is what Kalman’s version [4] of Newton’s identities says about
Wn:

W1 = 1,

W2 = 1 ·W1 + 2 = 3,

W3 = 1 ·W2 + 1 ·W1 + 3 = 7,

and Wn = 1 ·Wn−1 + 1 ·Wn−2 + 1 ·Wn−3 for n > 3.

This last equation is a perfect match for the recurrence relation for Un in equa-
tion (18), and by checking the initial values for Un andWn we can easily convince
ourselves that Wn = Un+1. We will give a more general version of Newton’s
identities in a moment.

2 Fibonacci-type and Lucas-type sequences

At this point, we are ready to define what we mean by a “Fibonacci-type” and
“Lucas-type” sequence. Given a fixed k and a fixed list of integers c1, c2, . . . , ck
with ck 6= 0, we define the associated Fibonacci-type sequence Fn as

Fn = 0 for all n < 0,

F0 = 1, (24)

and Fn = c1Fn−1 + c2Fn−2 + · · ·+ ckFn−k for all n ≥ 2.

As for the companion Lucas-type sequence Ln, we will define it in terms of the
k roots θ1, θ2, . . . , θk of the characteristic polynomial

xk −
(
c1x

k−1 + c2x
k−2 + · · ·+ ck

)
(25)

as follows:
Ln = (θ1)n + (θ2)n + · · ·+ (θk)n. (26)

We note that by direct calculation we have L0 = k. As for the other values of
Ln, we call once more upon the elegant presentation of Newton’s identities in
Kalman’s paper [4], which gives us the tidy little formulas

Ln = c1Ln−1 + c2Ln−2 + · · ·+ cn−1L1 + n cn for 1 ≤ n ≤ k, (27)
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Ln = c1Ln−1 + c2Ln−2 + · · ·+ ckLn−k for n > k. (28)

Together, these equations reassure us that Ln is always an integer, and from
equation (28) we see that Ln satisfies exactly the same recurrence as Fn from
equation (24).

After we state and prove our theorem, we will then show that our definition
of Fn in equation (24) will match nicely with the Fibonacci, Pell, Padovan, and
Tribonacci numbers from equations (1), (2), (3), and (4) so long as we choose
the appropriate constants c1, c2 or c1, c2, c3 and perhaps adjust the indexing if
necessary. Likewise, we will show that our definition of Ln in equation (26) will
give us the Lucas, Pell-Lucas, Perrin, and Tribonacci-Lucas numbers from the
same equations (again with some adjustment as needed). We have already seen
this at work for the Lucas numbers Ln in equation (8) and for the Tribonacci-
Lucas numbers Wn in equation (19).

Benjamin and Quinn [1, §3.1] provide an alternate approach to defining Fn

and Ln which works well for c1, c2, . . . non-negative integers. They define Fn to
be the number of ways to tile a strip of length n− 1 with c1 colors of squares,
c2 colors of dominos, and so on, and likewise Ln for tiling a bracelet of length
n, with the additional stipulations that F1 = 1 and L0 = k. It is possible to
show that this approach would give us the same sequences as from our earlier
definitions. A third approach would be to define these sequences in terms of
their generating functions, which we give in the proof of Theorem 1, below.
We feel that our approach of using initial values to define Fn and a Binet-type
formula to define Ln is the most natural of these three options.

3 Theorem and Proof

We are now ready to state and prove our main theorem.

Theorem 1. For any Fibonacci-type sequence of numbers Fn and companion
Lucas-type sequence of numbers Ln as defined above in equations (24) and (26),
we have

n−1∑
i=0

FiLn−i = (n− 1)Fn. (29)

Proof. Our proof will have three parts. First, we will show that the generating
functions f(x) and `(x) for the numbers Fn and Ln are

f(x) =

∞∑
n=0

Fnx
n =

x

h(x)
and `(x) =

∞∑
n=0

Lnx
n = k − xh′(x)

h(x)
(30)

respectively, with h(x) defined as

h(x) = 1−
(
c1x+ c2x

2 + · · ·+ ckx
k
)
. (31)

Then, we will show that the product f(x)`(x) equals (k−1)f(x)+xf ′(x). And
finally, we will use that equality to establish our convolution equation (29).

7



First, the generating functions. To show that f(x) in equation (30) really
is the same as x/h(x), we will look at f(x)h(x) and show that it equals x. To
do this, we note that since we defined Fn = 0 for n < 0 in (24), then we can
extend our sum in (30) as follows:

f(x) =

∞∑
n=0

Fnx
n =

∞∑
n=−∞

Fnx
n.

To calculate f(x)h(x), we bring h(x) inside the sum in the above equation to
give us

f(x)h(x) =

∞∑
n=−∞

Fnx
n(1− c1x− c2x2 − · · · − ckxk).

By splitting apart this sum and then re-indexing each individual sum, just as
we did in equations (10) and (11), this all becomes

f(x)h(x) =

∞∑
n=−∞

(
Fn − c1Fn−1 − c2Fn−2 − · · · − ckFn−k

)
xn.

Now, for n ≥ 2 the coefficient of xn in the above sum will vanish thanks to the
last part of equation (24), and likewise for n < 0 by the first part of equation
(24). Finally, for n = 1 the coefficient of x1 in the above sum has just one
non-zero term and that is F1 = 1. We conclude that

f(x)h(x) =
(
F1

)
x1 = x

and so f(x) = x/h(x) as desired.
We pause here to explain how we knew that x/h(x) would be the gen-

erating function for the sequence of Fibonacci-type numbers Fn and likewise
k − xh′(x)/h(x) for Ln: it was all due to trial and error. We knew that
x/(1− x− x2) was the generating function for the Fibonaccis, and we guessed
correctly that x/(1−x−x2−x3) would give the Tribonaccis. From this point, it
took not much effort to arrive at x/h(x) as the general form. It took quite a bit
of effort to arrive at k−xh′(x)/h(x) for Ln; we started with (2−x)/(1−x−x2)
which generates the Lucas numbers and then did the same for innumerable
other sequences until the pattern popped into view. We also note that when
Komatsu [5] proved equation (4) for the Tribonaccis, he used the generating
function x/(1− x− x2− x3) as well as its derivative, and so that gave us a hint
that we should be thinking about derivatives in the general case.

Moving on, we still need to demonstrate that `(x) in equation (30) really is
the same as k − xh′(x)/h(x). We will look at `(x)h(x) and show that it equals
kh(x)− xh′(x), and to do this, we write out `(x)h(x), bringing h(x) inside the
sum, to give us

`(x)h(x) =

∞∑
n=0

Lnx
n(1− c1x− c2x2 − · · · − ckxk).
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If we write out all the terms on the right, gathering together those terms with
the same power of x, this all becomes

`(x)h(x) = L0 +
(
L1 − c1L0

)
x+

(
L2 − c1L1 − c2L0

)
x2

+
(
L3 − c1L2 − c2L1 − c3L0

)
x3 + · · · .

For 1 ≤ n ≤ k. the coefficient of xn in the above sum is(
Ln − c1Ln−1 − c2Ln−2 − · · · − cn−1L1 − cnL0

)
and thanks to the first Newton’s identity (27) this equals ncn−cnL0. For n > k,
the coefficient of xn is(

Ln − c1Ln−1 − c2Ln−2 − · · · − ckLn−k

)
and thanks to the second Newton’s identity (28) this equals 0. So, we have

`(x)h(x) = L0 +

k∑
n=1

(
ncn − cnL0

)
xn,

and if we split apart the sum and write everything out, we have

`(x)h(x) = L0 +
(

1c1x+ 2c2x
2 + 3c3x

3 + · · ·+ kckx
k
)

− L0

(
c1x+ c2x

2 + c3x
3 + · · ·+ ckx

k
)

We can see that the second line in the above equation is −L0

(
1−h(x)

)
thanks

to our definition of h(x) in equation (31). It is a bit harder to see that the

first line will be L0 +
(
− xh′(x)

)
, but if we calculate −xh′(x) we can see the

connection. Hence, we have shown

`(x)h(x) = L0 +
(
− xh′(x)

)
− L0

(
1− h(x)

)
,

and since L0 = k then this last line simplifies to kh(x)− xh′(x), as desired.

Next, the product f(x)`(x). Since our equation for `(x) in (30) has the
expression h′(x)/h(x), it is reasonable to start with something involving lnh(x)
and then take the derivative to obtain that h′(x)/h(x). After a considerable
amount of trial and error (again), we arrived at the following approach: we
start with f(x) = x/h(x) from (30), and we take the natural logarithm to
obtain ln f(x) = lnx − lnh(x). Next, taking the derivative of both sides, we
find that

f ′(x)

f(x)
=

1

x
− h′(x)

h(x)
.
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If we multiply both sides by x, we obtain

xf ′(x)

f(x)
= 1− xh′(x)

h(x)
,

and if we add k − 1 to both sides and simplify, we have

(k − 1)f(x) + xf ′(x)

f(x)
= k − xh′(x)

h(x)
, (32)

and we recognize that the right-hand side of equation (32) is `(x), so after
multiplying both sides by f(x) we obtain our desired equation,

(k − 1)f(x) + xf ′(x) = f(x)`(x). (33)

Finally, the convolution equation. We recall that f(x) =
∑
Fnx

n and
`(x) =

∑
Lnx

n, and so equation (33) becomes

(k − 1)

∞∑
n=0

Fnx
n + x

d

dx

∞∑
n=0

Fnx
n =

∞∑
n=0

Fnx
n
∞∑

n=0

Lnx
n. (34)

After simplifying the left-hand side of the above equation, we have

∞∑
n=0

(
(k − 1)Fn + nFn

)
xn =

∞∑
n=0

Fnx
n
∞∑

n=0

Lnx
n, (35)

and if we now multiply out the two series on the right of the above equation,
we will find that we have

∞∑
n=0

(
(k − 1)Fn + nFn

)
xn =

∞∑
n=0

(
FnL0 + · · ·+ F0Ln

)
xn. (36)

Comparing the coefficients of xn in the above equation, we have

(k − 1)Fn + nFn =

n∑
i=0

FiLn−i. (37)

If we now subtract the last term in that summation from both sides, we have

(k − 1)Fn + nFn −FnL0 =

n−1∑
i=0

FiLn−i, (38)

and since L0 = k then the left-hand side of (38) simplifies to (n − 1)Fn, thus
giving us our desired equation (29).
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4 Examples

We can now use equation (29) in Theorem 1 to establish equations (1), (2), (3),
and (4) from the beginning of this paper.

First, we address equation (1) with the Fibonacci and Lucas numbers. If
we set k = 2 and coefficients c1 = c2 = 1, then the Fibonacci-type numbers
Fn from (24) are a perfect match for our “regular” Fibonaccis Fn from (6),
and likewise the Lucas-type numbers Ln from (26) match up just fine with the
“regular” Lucas numbers Ln in equation (8). Thus, equation (29) becomes

n−1∑
i=0

Fi Ln−i = (n− 1)Fn,

and if we add FnL0 = 2Fn to both sides we obtain equation (1).
Likewise, for equation (2) with the Pell and Pell-Lucas numbers, we set k = 2

and we assign c1 = 2 and c2 = 1. The definition of Fn in this case from (24)
would be F0 = 0,F1 = 1, and Fn = 2Fn−1 + Fn−2, and this matches Koshy’s
definition of the Pell numbers Pn in (13) so long as we keep n ≥ 1. As for the
Lucas-type numbers Ln in this case, the definition in (26) along with Newton’s
identities (27) and (28) give us that L0 = 2, L1 = 2, and Ln = 2Ln−1 + Ln−2.
This is the sequence 2, 2, 6, 14, 34, 82 . . . starting at n = 0, and when we compare
it to Koshy’s sequence Qn from earlier which is 1, 3, 7, 17, 41, . . . starting at
n = 1 and with the same recurrence Qn = 2Qn−1+Qn−2, we see that Ln = 2Qn

so long as n ≥ 1.
So, keeping in mind that Koshy’s Pn and Qn are only defined for n ≥ 1, we

can re-write equation (29) in this case to give us

F0Ln +

n−1∑
i=1

Pi 2Qn−i = (n− 1)Pn,

and if we recall that F0 = 0 and if we divide both sides by 2 we obtain equation
(2).

As for equation (3) with the Padovan and Perrin numbers, their definitions
in equation (14) tells us that we should use k = 3 and we should set c1 = 0
and c2 = c3 = 1. When we write out the numbers Fn in this case, we have
(starting at n = 0) the sequence 0, 1, 0, 1, 1, 1, 2, 2, 3, . . . , and when we compare
this to Stewart’s definition of the Padovan numbers An from earlier we see that
Fn = An−3 (for n ≥ 3). As for the numbers Ln in this case, from equations
(26), (27), and (28) we have, starting at n = 0, the sequence 3, 0, 2, 3, 2, 5, 5, . . .
which is a perfect match for the Perrin numbers, giving us Ln = En.

So, to derive equation (3) we begin with equation (29) but with n+3 instead
of n and we separate out the first three terms from that sum to obtain

F0Ln+3 + F1Ln+2 + F2Ln+1 +

n+2∑
i=3

FiL(n+3)−i = (n+ 2)Fn+3.
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If we now substitute F0 = 0, F1 = 1, F2 = 0, Fn = An−3 (this last one for
n ≥ 3) and Ln = En, then the above equation becomes

En+2 +

n+2∑
i=3

Ai−3En+3−i = (n+ 2)An,

and if we re-index the summation then this becomes

En+2 +

n−1∑
i=0

AiEn−i = (n+ 2)An.

It remains only to move the En+2 to the other side, and add AnE0 = 3An to
both sides, to obtain equation (3).

Finally, we have the Tribonacci convolution in equation (4). Thanks to the
recursion for the Tribonacci numbers in equation (15) we know we should set
k = 3 and c1 = c2 = c3 = 1. The Fibonacci-type numbers Fn in this case, from
(24), match perfectly with Tn. As for Ln in this case, the definition of Ln in
(26) is identical to the definition of Wn in (19), and we already discovered that
these numbers Wn satisfy Wn = Un+1, so we have that Ln = Un+1. Thus, to
establish (4) we should begin with equation (29) but with n − 1 instead of n,
and we then separate out the last term in the sum to obtain

n−2∑
i=0

FiL(n−1)−i =

n−3∑
i=0

FiL(n−1)−i + Fn−2L1 = (n− 2)Fn−1.

We can now use the identities L1 = 1, Fn = Tn, and Ln = Un+1 to quickly
obtain

n−3∑
i=0

TiUn−i + Tn−2 = (n− 2)Tn−1,

and this gives us equation (17) which, thanks to our definition of Un, is also
equation (4).

5 Conclusion

We point out that many other authors have studied the convolution of Fibonacci-
type and Lucas-type numbers. Zeitlin [16, Formula (5.6)] gave a version of
Theorem 1 for second-order recurrences; his formula is

n∑
i=0

Zn+1−iVi+1 = (n+ 1)Zn+2, (39)

where his Zn is the Fibonacci-type sequence that satisfies the recurrence formula
Zn = aZn−1+bZn−2, and likewise his Vn is the Lucas-type sequence that satisfies
the same recurrence. Robbins [10, Theorem 5] improved on Zeitlin’s result with
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an identity that holds for weighted convolutions of Zeitlin’s Zn and Vn sequences.
Szakács [12, Theorem 5] also covered second-order recurrences and gave specific
examples for the Fibonacci, Pell, and Jacobsthal sequences. Dresden and Wang
[2, Theorem 5] gave a induction proof of a version of Theorem 1 that applies
to the so-called k-bonacci numbers. Ours is the only result that applies to any
recurrence sequence Fn so long as F1 = 1 and Fn = 0 for n ≤ 0.

Finally, we note that there is plenty of work still to be done in convolutions.
First, here is a formula that can be derived from our Theorem 1 using k = 3
with c1 = c2 = 2 and c3 = −1:

n∑
i=0

FiFi+1F
2
n−i =

n+ 2

5
FnFn+1 −

3

25

(
F2n+2 + (−1)n+1(n+ 1)

)
.

We leave the (quite challenging!) details to the reader, along with a challenge
to find other convolution formulas like this.

And second, here are two additional convolution formulas that have no con-
nection to our Theorem 1 yet still show a remarkable pattern. Koshy and
Griffiths [8, equation (2.2)] discovered this delightful convolution formula that
connects the seemingly-unrelated Jacobsthal numbers Jn and Fibonacci num-
bers Fn,

n∑
i=0

JiFn−i = Jn+1 − Fn+1, (40)

and both Frontczak [3, Theorem 2.1] and Benjamin and Quinn [1, p. 47] have
found an equally delightful formula that links the Tribonacci numbers Tn with
the Fibonacci numbers Fn,

n∑
i=0

TiFn−i = Tn+2 − Fn+2. (41)

We can’t help but notice the similarity between equations (40) and (41), and
we can’t help but ask if there are other general convolution formulas waiting to
be discovered.
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