Proposed Problem.

Gregory Dresden (Washington \& Lee University, Lexington, VA, USA), and Yunqi Liu (Nanjing Foreign Language School, Nanjing, China).

PROBLEM:

Suppose $\phi>0$ satisfies the equation $\phi^{a}+\phi^{b}=2$ for distinct integers a, b. Show that every natural number n can be written as a sum of exactly n distinct integer powers of ϕ.

For example, the golden ratio $\phi=(1+\sqrt{5}) / 2$ satisfies $\phi^{-2}+\phi^{1}=2$, and the natural number $n=4$ can indeed be written as a sum of four distinct powers of ϕ, as shown here:

$$
4=\phi^{-4}+\phi^{-3}+\phi^{0}+\phi^{2} .
$$

Likewise, the tribonacci ratio γ satisfies $\gamma^{-3}+\gamma^{1}=2$, and we can write 7 as a sum of seven distinct powers of γ, as shown here:

$$
7=\gamma^{-9}+\gamma^{-8}+\gamma^{-7}+\gamma^{-5}+\gamma^{-3}+\gamma^{-1}+\gamma^{3} .
$$

