SOLUTIONS

Highest power of two dividing an entry of a matrix

1151. Proposed by Gregory Dresden, Washington and Lee University, Lexington, VA. Fix an odd integer b in set $M=\left(\begin{array}{ll}1 & b \\ 4 & 5\end{array}\right)$. For a positive integer n, let $e(n)$ denote the exponent of the highest power of 2 that divides an entry of M^{n}. In other words, $2^{e(n)}$ divides some entry in M^{n}, but no larger power of 2 divides an entry of M^{n}. Find $e(n)$ as a function of n.

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria.

The answer is $e(n)=2+\nu_{2}(n)$ where as usual we will use $\nu_{2}(k)$ to denote the exponent of the highest power of 2 which divides k. The characteristic polynomial of M is $P(X)=X^{2}-6 X+5-4 b$. So, from the equality $M^{2}=6 M+(4 b-5) I_{2}$ we deduce that $M^{n}=6 M^{n-1}+(4 b-5) M^{n-2}$ for all $n \geq 2$. Thus, if we write $M^{n}=$ $\left(\begin{array}{ll}a_{n} & b_{n} \\ c_{n} & d_{n}\end{array}\right)$, then all four sequences $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}$, and $\left(d_{n}\right)_{n \geq 0}$ satisfy the same recurrence relation (namely $x_{n}=6 x_{n-1}+(4 b-5) x_{n-2}$, but they differ in their initial conditions:

$$
\left(a_{0}, a_{1}\right)=(1,1), \quad\left(b_{0}, b_{1}\right)=(0, b), \quad\left(c_{0}, c_{1}\right)=(0,4), \quad\left(b_{0}, b_{1}\right)=(1,5) .
$$

- The sequence $\left(a_{n}\right)_{n \geq 0}$ satisfies the recurrence $a_{n} \equiv a_{n-2} \bmod 2$ and because $a_{0}=$ $a_{1}=1$ we see that a_{n} is odd for every n. The same argument shows that d_{n} is odd for every n.
- Let $\left(\delta_{n}\right)_{n \geq 0}$ the sequence defined recursively by

$$
\delta_{0}=0, \delta_{1}=1, \quad \text { and } \quad \delta_{n}=6 \delta_{n-1}+(4 b-5) \delta_{n-2} \quad \text { for } n \geq 2
$$

Then a simple induction shows that $b_{n}=b \delta_{n}$ and $c_{n}=4 \delta_{n}$ for all n. Since b is odd we see that $\nu_{2}\left(b_{n}\right)=\nu_{2}\left(\delta_{n}\right)$ while $\nu_{2}\left(c_{n}\right)=2+\nu_{2}\left(\delta_{n}\right)$ and $\left.\nu_{2}\left(a_{n}\right)=\nu_{(} d_{n}\right)=0$. We conclude that

$$
e(n)=2+v_{2}\left(\delta_{n}\right)
$$

- Let $\ell=(b+1) / 2 \in \mathbb{Z}$, and suppose that $\ell \neq 0$. We define $\alpha=3+2 \sqrt{2 \ell}$ and $\beta=$ $3-2 \sqrt{2 \ell}$, the two zeros of the second degree trinomial $X^{2}-6 X+5-4 b=0$. Then

$$
\begin{aligned}
\delta_{n} & =\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=\frac{1}{4 \sqrt{2 \ell}} \sum_{k=0}^{n}\binom{n}{k} 3^{n-k}(2 \sqrt{2 \ell})^{k}\left(1-(-1)^{k}\right) \\
& =\sum_{0 \leq k<n / 2}^{n}\binom{n}{2 k+1} 3^{n-2 k-1}(8 l \ell)^{k} \equiv n 3^{n-1} \bmod 8 .
\end{aligned}
$$

In particular, this proves that if $n=2 m+1$ (i.e., n is odd), then $\nu_{2}\left(\delta_{n}\right)=0$. On the other hand,

$$
\begin{aligned}
\frac{\alpha^{n}+\beta^{n}}{2} & =\sum_{k=0}^{n}\binom{n}{k} 3^{n-k}(2 \sqrt{2 \ell})^{k} \frac{1+(-1)^{k}}{2} \\
& =\sum_{0 \leq k \leq n / 2}^{n}\binom{n}{2 k} 3^{n-2 k}(8 \ell)^{k}=1 \quad \bmod 2
\end{aligned}
$$

The equality $\delta_{2 n}=\left(\alpha^{n}+\beta^{n}\right) \delta_{n}$ thus implies that $\nu_{2}\left(\delta_{2 n}\right)=1+\nu_{2}\left(\delta_{n}\right)$. This shows inductively that $\nu_{2}\left(\delta_{2^{k}(2 m+1)}\right)=k+v_{2}\left(\delta_{2 m+1}\right)=k$; that is, $\nu_{2}\left(\delta_{n}\right)=v_{2}(n)$.

- It remains to consider the case $b=-1$. In this case $\delta_{n}=n 3^{n-1}$, and the fact that $\nu_{2}\left(\delta_{n}\right)=\nu_{2}(n)$ for all $n \geq 1$ is immediate in this case.

Combining the above results we see that $e(n)=2+\nu_{2}(n)$, as announced.
Also solved by Armstrong Problem Solvers; Levent Batakci, Case Western Reserve U.; Ali Deeb and Hafez Al-Assad (jointly), Higher Inst. for Applied Sciences and Technology, Syria; Brendan Dosch (student), North Central C.; James Duemmel, Bellingham, WA; Florida Atlantic U. Problem Solving Group; Neville Fogarty and Chris Kennedy (jointly), Christopher Newport U.; George Washington U. Problems Group; Eugene Herman, Grinnell C.; John Kieffer, U. of Minnesota Twin Cities; Koopa Tak Lun Koo, Chinese STEAM Academy, Hong Kong; A. Bathi Kasturiarachi, Kent St. U. at Stark; Carl Libis, Columbia Southern U.; Albert Natian, Los Angeles Valley C.; Northwestern U. Math Problem Solving Group; Éric Pité, Paris, France; Francisco Perdomo and Ángel Plaza (jointly), Universidad de Las Palmas de Gran Canaria, Spain; Arthur Rosenthal, Salem St. U.; Ioannis Sfikas, Athens, Greece; Jacob Siehler, Gustavus Adolphus C.; Enrique Treviño, Lake Forest C.; Edward White, Frostburg, MD; and the proposer.

An inequality for the area of a triangle

1152. Proposed by Yagoub Aliev, ADA University, Baku, Azerbaijan.

Let R be the radius of the circumscribed circle of triangle $A B C$. Let D be a point on the $\operatorname{arc} B C$ which does not contain A, and drop perpendicular $D E$ to $B C$. Now take point F on the same arc such that $\angle C A F=2 \angle B A F$. Prove that $8 R \cdot$ Area $(C D E) \leq C F^{3}$.
Solution by Michel Bataille, Rouen, France.

