Note that

$$b_n - b_{n-1} = \frac{H_{n-1} \sum_{i=1}^n \frac{x_i}{i} - H_n \sum_{i=1}^{n-1} \frac{x_i}{i}}{H_{n-1} H_n} = \frac{\frac{x_n}{n} \sum_{i=1}^{n-1} \frac{1}{i} - \frac{1}{n} \sum_{i=1}^{n-1} \frac{x_i}{i}}{H_{n-1} H_n}.$$

Since (x_n) takes only the values 0, 1, the equation above shows that $b_n \ge b_{n-1}$ if $x_n = 1$, while $b_n \le b_{n-1}$ if $x_n = 0$. It follows that

$$\limsup_{k\to\infty}b_k=\lim_{n\to\infty}b_{(2n+1)!-1}=\frac{1}{2}.$$

A similar argument shows that $\liminf_{k\to\infty} b_k = \lim_{n\to\infty} b_{(2n)!-1} = 1/2$; this shows that $\lim_{n\to\infty} b_n = 1/2$.

Also solved by Robert Calcaterra, Dmitry Fleischman, Russell Gordon, Eugene A. Herman, Elias Lampakis (Greece), José Heber Nieto (Venezuela), and the proposer. There was one incomplete or incorrect solution.

A sextic with Galois group S_3

December 2018

2058. Proposed by Gregory Dresden, Saimon Islam (student) and Jiahao Zhang (student), Washington & Lee University, Lexington, VA.

Let a be a rational number such that the polynomial

$$f(x) = x^6 + 3x^5 - ax^4 - (2a + 5)x^3 - ax^2 + 3x + 1$$

is irreducible over \mathbb{Q} , and let F be the splitting field for f(x) over \mathbb{Q} . Find the Galois group $Gal(F/\mathbb{Q})$ (up to isomorphism).

Solution by Robert Calcaterra, University of Wisconsin-Platteville, Platteville, WI. The Galois group $G = \operatorname{Gal}(F/\mathbb{Q})$ is isomorphic to the symmetric group S_3 . Observe that f(x) is palindromic, so $x^6 f(1/x) = f(x)$; also, f(-x-1) = f(x). It follows that z is a zero of f(x) if and only if $\iota(z) := 1/z$ is a zero thereof, if and only if $\tau(z) := -z - 1$ is. Thus, ι and τ are involutions (i.e., ι^2 and τ^2 are both the identity transformation) acting on the set of zeros of f. (They may be regarded formally as projective transformations of $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$.) Let $\sigma = \iota \tau$ be the transformation $z \mapsto -1/(1+z)$. The group of transformations generated by ι and τ is evidently the same as that generated by σ and τ (since $\sigma = \iota \tau$ and $\iota = \sigma \tau$). It is easy to check that σ^3 is the identity transformation, and $\tau \sigma = \sigma^2 \tau$. Therefore, the group $\mathfrak{T} = \langle \iota, \tau \rangle = \langle \sigma, \tau \rangle$ generated by ι , τ (or by σ , τ) is isomorphic to the dihedral group D_6 (i.e., to the symmetric group S_3); it consists of the elements id, σ , σ^2 , τ , $\sigma\tau$, $\sigma^2\tau$. Since ι , τ act on the set of roots of f(x), so does \mathfrak{T} .

Lemma. \mathfrak{T} acts on the set of roots of f(x) simply, i.e., given a root z of f(x) and transformations $\alpha \neq \beta$ in \mathfrak{T} , we have $\alpha(z) \neq \beta(z)$.

Proof. Note that the group \mathfrak{T} consists of degree-1 projective transformations with coefficients in \mathbb{Q} , i.e., $\alpha(z)$ and $\beta(z)$ are quotients of polynomials of degree at most 1 in z, not both constant, with coefficients in \mathbb{Q} . We see that $\alpha(z)$ and $\beta(z)$ are roots of f(x) since \mathfrak{T} acts on roots of f(x) and z is one such root. If we had $\alpha(z) = \beta(z)$, clearing denominators in this equation one sees that z would be root of a linear or quadratic equation with rational coefficients, contradicting the hypothesis that z is a root of the degree-6 polynomial f(x) that is irreducible over \mathbb{Q} .

Fix a root z of f(x). By the lemma above, the set of six distinct roots of f(x) is $\{\alpha(z) : \alpha \in \mathfrak{T}\}$. For all $\alpha \in \mathfrak{T}$, the complex number $\alpha(z)$ is a rational expression in z

with rational coefficients; thus, every field automorphism $g \in G$ satisfies $g(\alpha(z)) = \alpha(g(z))$. Since f(x) is irreducible, G acts transitively on the set of these six roots; in particular, for each $\alpha \in \mathfrak{T}$ there is $g \in G$ such that $\alpha(z) = g(z)$. If $g, h \in G$ satisfy $g(z) = \alpha(z) = h(z)$, then the images under g, h of any fixed root z' of f(x) (necessarily of the form $z' = \beta(z)$ for some $\beta \in \mathfrak{T}$) must coincide: $g(z') = g(\beta(z)) = \beta(g(z)) = \beta(g(z)) = \beta(h(z)) = h(\beta(z)) = h(z')$. It follows that, given $\alpha \in \mathfrak{T}$, a unique automorphism $g = g_{\alpha}$ of F is determined by the condition $g(z) = \alpha(z)$. Given $\alpha, \beta \in \mathfrak{T}$, we have $g_{\alpha\beta} = g_{\beta}g_{\alpha}$, since $g_{\alpha\beta}(z) = \alpha\beta(z) = \alpha(g_{\beta}(z)) = g_{\beta}(\alpha(z)) = g_{\beta}(g_{\alpha}(z))$. Therefore, $\alpha \mapsto g_{\alpha}$ is an isomorphism between G and the opposite group of \mathfrak{T} , which is still isomorphic to S_3 .

Also solved by Anthony Bevelacqua, Peter McPolin (Northern Ireland), Michael Reid, and the proposer.

A canonical similarity transformation of a given triangle

December 2018

2059. Proposed by Andrew Wu, St. Albans School, McLean, VA.

Let triangle $\triangle ABC$ be acute and scalene with orthocenter H, altitudes \overline{AD} , \overline{BE} , and \overline{CF} , and circumcircle Ω . Let Γ be the circle with diameter \overline{AH} . Circles Γ and Ω intersect at A and at a second point K. Let point P lie on Γ so that \overline{HP} is parallel to \overline{EF} . Let M be the midpoint of \overline{BC} . Let \overrightarrow{AM} intersect Ω at $R \neq A$, and \overline{EF} at Q. Let \overrightarrow{PQ} meet Γ again at $X \neq P$. Show that \overline{DX} and \overline{KR} concur on Γ .

Solution by Kyle Gatesman (student), Johns Hopkins University, Baltimore, MD.

Let Y be the intersection of \overline{DX} and \overline{KR} . Let U be the reflection of H on \overrightarrow{BC} ; thus, $\angle USD = \angle HSD$, and it is well known that U lies on Ω . Let O be the circumcenter of