Note that

$$
b_{n}-b_{n-1}=\frac{H_{n-1} \sum_{i=1}^{n} \frac{x_{i}}{i}-H_{n} \sum_{i=1}^{n-1} \frac{x_{i}}{i}}{H_{n-1} H_{n}}=\frac{\frac{x_{n}}{n} \sum_{i=1}^{n-1} \frac{1}{i}-\frac{1}{n} \sum_{i=1}^{n-1} \frac{x_{i}}{i}}{H_{n-1} H_{n}} .
$$

Since $\left(x_{n}\right)$ takes only the values 0,1 , the equation above shows that $b_{n} \geq b_{n-1}$ if $x_{n}=1$, while $b_{n} \leq b_{n-1}$ if $x_{n}=0$. It follows that

$$
\limsup _{k \rightarrow \infty} b_{k}=\lim _{n \rightarrow \infty} b_{(2 n+1)!-1}=\frac{1}{2} .
$$

A similar argument shows that $\liminf _{k \rightarrow \infty} b_{k}=\lim _{n \rightarrow \infty} b_{(2 n)!-1}=1 / 2$; this shows that $\lim _{n \rightarrow \infty} b_{n}=1 / 2$.

Also solved by Robert Calcaterra, Dmitry Fleischman, Russell Gordon, Eugene A. Herman, Elias Lampakis (Greece), José Heber Nieto (Venezuela), and the proposer. There was one incomplete or incorrect solution.

A sextic with Galois group S_{3}

December 2018
2058. Proposed by Gregory Dresden, Saimon Islam (student) and Jiahao Zhang (student), Washington \& Lee University, Lexington, VA.

Let a be a rational number such that the polynomial

$$
f(x)=x^{6}+3 x^{5}-a x^{4}-(2 a+5) x^{3}-a x^{2}+3 x+1
$$

is irreducible over \mathbb{Q}, and let F be the splitting field for $f(x)$ over \mathbb{Q}. Find the Galois $\operatorname{group} \operatorname{Gal}(F / \mathbb{Q})$ (up to isomorphism).

Solution by Robert Calcaterra, University of Wisconsin-Platteville, Platteville, WI.
The Galois group $G=\operatorname{Gal}(F / \mathbb{Q})$ is isomorphic to the symmetric group S_{3}. Observe that $f(x)$ is palindromic, so $x^{6} f(1 / x)=f(x)$; also, $f(-x-1)=f(x)$. It follows that z is a zero of $f(x)$ if and only if $\iota(z):=1 / z$ is a zero thereof, if and only if $\tau(z):=-z-1$ is. Thus, ι and τ are involutions (i.e., ι^{2} and τ^{2} are both the identity transformation) acting on the set of zeros of f. (They may be regarded formally as projective transformations of $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$.) Let $\sigma=\iota \tau$ be the transformation $z \mapsto-1 /(1+z)$. The group of transformations generated by ι and τ is evidently the same as that generated by σ and τ (since $\sigma=\iota \tau$ and $\iota=\sigma \tau$). It is easy to check that σ^{3} is the identity transformation, and $\tau \sigma=\sigma^{2} \tau$. Therefore, the group $\mathfrak{T}=\langle\iota, \tau\rangle=\langle\sigma, \tau\rangle$ generated by ι, τ (or by σ, τ) is isomorphic to the dihedral group D_{6} (i.e., to the symmetric group S_{3}); it consists of the elements id, $\sigma, \sigma^{2}, \tau, \sigma \tau, \sigma^{2} \tau$. Since ι, τ act on the set of roots of $f(x)$, so does \mathfrak{T}.

Lemma. \mathfrak{T} acts on the set of roots of $f(x)$ simply, i.e., given a root z of $f(x)$ and transformations $\alpha \neq \beta$ in \mathfrak{T}, we have $\alpha(z) \neq \beta(z)$.
Proof. Note that the group \mathfrak{T} consists of degree-1 projective transformations with coefficients in \mathbb{Q}, i.e., $\alpha(z)$ and $\beta(z)$ are quotients of polynomials of degree at most 1 in z, not both constant, with coefficients in \mathbb{Q}. We see that $\alpha(z)$ and $\beta(z)$ are roots of $f(x)$ since \mathfrak{T} acts on roots of $f(x)$ and z is one such root. If we had $\alpha(z)=\beta(z)$, clearing denominators in this equation one sees that z would be root of a linear or quadratic equation with rational coefficients, contradicting the hypothesis that z is a root of the degree-6 polynomial $f(x)$ that is irreducible over \mathbb{Q}.

Fix a root z of $f(x)$. By the lemma above, the set of six distinct roots of $f(x)$ is $\{\alpha(z): \alpha \in \mathfrak{T}\}$. For all $\alpha \in \mathfrak{T}$, the complex number $\alpha(z)$ is a rational expression in z
with rational coefficients; thus, every field automorphism $g \in G$ satisfies $g(\alpha(z))=$ $\alpha(g(z))$. Since $f(x)$ is irreducible, G acts transitively on the set of these six roots; in particular, for each $\alpha \in \mathfrak{T}$ there is $g \in G$ such that $\alpha(z)=g(z)$. If $g, h \in G$ satisfy $g(z)=\alpha(z)=h(z)$, then the images under g, h of any fixed root z^{\prime} of $f(x)$ (necessarily of the form $z^{\prime}=\beta(z)$ for some $\beta \in \mathfrak{T}$) must coincide: $g\left(z^{\prime}\right)=g(\beta(z))=$ $\beta(g(z))=\beta \alpha(z)=\beta(h(z))=h(\beta(z))=h\left(z^{\prime}\right)$. It follows that, given $\alpha \in \mathfrak{T}$, a unique automorphism $g=g_{\alpha}$ of F is determined by the condition $g(z)=\alpha(z)$. Given $\alpha, \beta \in$ \mathfrak{T}, we have $g_{\alpha \beta}=g_{\beta} g_{\alpha}$, since $g_{\alpha \beta}(z)=\alpha \beta(z)=\alpha\left(g_{\beta}(z)\right)=g_{\beta}(\alpha(z))=g_{\beta}\left(g_{\alpha}(z)\right)$. Therefore, $\alpha \mapsto g_{\alpha}$ is an isomorphism between G and the opposite group of \mathfrak{T}, which is still isomorphic to S_{3}.

Also solved by Anthony Bevelacqua, Peter McPolin (Northern Ireland), Michael Reid, and the proposer.

A canonical similarity transformation of a given triangle

December 2018
2059. Proposed by Andrew Wu, St. Albans School, McLean, VA.

Let triangle $\triangle A B C$ be acute and scalene with orthocenter H, altitudes $\overline{A D}, \overline{B E}$, and $\overline{C F}$, and circumcircle Ω. Let Γ be the circle with diameter $\overline{A H}$. Circles Γ and Ω intersect at A and at a second point K. Let point P lie on Γ so that $\overline{H P}$ is parallel to $\overline{E F}$. Let M be the midpoint of $\overline{B C}$. Let $\overleftrightarrow{A M}$ intersect Ω at $R \neq A$, and $\overline{E F}$ at Q. Let $\overleftrightarrow{P Q}$ meet Γ again at $X \neq P$. Show that $\overline{D X}$ and $\overline{K R}$ concur on Γ.

Solution by Kyle Gatesman (student), Johns Hopkins University, Baltimore, MD.

Let Y be the intersection of $\overline{D X}$ and $\overline{K R}$. Let U be the reflection of H on $\overleftrightarrow{B C}$; thus, $\angle U S D=\angle H S D$, and it is well known that U lies on Ω. Let O be the circumcenter of

