$2 x+1>0$. Thus, if $g(x, y)$ is (a positive) prime, we must have $2 x-1=1$ so that $x=1$. Since $y^{2}=2 x^{2}-1$, we see that $|y|=1$ and $g(x, y)=3$.

Also solved by REZA AKHLAGHI, Big Sandy Community and Technical C.; HERB BAILEY and JOHN RICKERT (jointly), Rose-Hulman Institute of Technology; MICHEL BATAILLE, Rouen, France; BRIAN D. BEASLEY, Presbyterian C.; DAVID BRESSOUD and STAN WAGON (jointly), Macalester C.; STAN BYRD, U. of Tennessee-Chattanooga; MINH CAN, Brooks C.; JOHN CHRISTOPHER, California State U.-Sacramento; PHIL CLARKE, Los Angeles Valley C.; ELLIOTT COHEN, Fontenay-sous-Bois, France; CON AMORE PROBLEM GROUP, The Danish U. of Education, Copenhagen, Denmark; CHIP CURTIS, Missouri Southern State C.; JIM DELANY, California Polytechnic State U.; HABIB Y. FAR, Montgomery C.; DMITRY FLEISCHMAN, Santa Monica, CA; MATT FOSS, North Hennepin C.C.; OVIDIU FURDUI (student), Western Michigan U.; G.R.A. 20 MATH PROBLEMS GROUP, Rome, Italy; NATALIO H. GUERSENZVAIG, Universidad CAECE, Buenos Aires, Argentina; PETER HOHLER, Aarburg, Switzerland; RICKY IKEDA, Leeward C.C.; KHUDIJA JAMIL (student), California State U.-Northridge; ALEXANDER KOONCE, U. of Redlands; KENNETH KORBIN, New York, NY; HARRIS KWONG, SUNY C. at Fredonia; NORTHWESTERN U. MATH PROBLEM SOLVING GROUP; PHILIP OPPENHEIMER, Norwalk, CT; MOHAMMAD RIAZI-KERMANI, Fort Hays State U.; SAINT ANSELM C. PROBLEM SOLVERS; WILLIAM SEAMAN, Albright C.; RICHARD M. SMITH; JOHN HENRY STEELMAN, Indiana U. of Pennsylvania; DAVID STOLP (student), California State U.-Chico; H. T. TANG, Hayward, CA; THOMAS WALES, Cambridge, MA; HONGBIAO ZENG, Fort Hays State U.; LI ZHOU, Polk C. C.; and the proposer.

Editors' notes: Solver John Christopher used the fact that primes congruent to 1 modulo 4 can be written as the sum of squares in (essentially) only one way to show that 5 is the only prime assumed by $f(x, y)=\left(2 x^{2}\right)^{2}+\left(y^{2}\right)^{2}=(2 x y)^{2}+\left(y^{2}-2 x^{2}\right)^{2}$.

Solvers Michel Bataille, David Bressoud \& Stan Wagon, Habib Y. Far, John Henry Steelman, and David Stolp considered negative values of the function $g(x, y)=$ $4 x^{4}-y^{4}$ and discovered the following "negative prime" values: $g(2,3)=-17$, $g(12,17)=-577$ and $g(408,577)=-665857$. Bressoud and Wagon show that these are the only negative prime values with fewer than 800,000 digits that are assumed by $g(x, y)$, and Far claims that these three values are the only negative prime values assumed by $g(x, y)$.

A critical parameter for a family of polar curves

758. Proposed by Gregory Dresden, Washington \& Lee University, Lexington, VA

For b a real number, let $L(b)$ be the arc length of the polar graph $r=(1-b)+$ $b \cos (\theta)$ with θ in the interval $[0,2 \pi]$.
(a) Find the extreme values of the function L.
(b) Find all values b for which the function L is differentiable.

Solution by William Seaman, Albright College, Reading, PA
(a) We have

$$
\begin{aligned}
L(b) & =\int_{0}^{2 \pi} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{0}^{2 \pi} \sqrt{1-2 b(1-b)(1-\cos (\theta))} d \theta \\
& =2 \int_{0}^{\pi} \sqrt{1-2 b(1-b)(1-\cos (\theta))} d \theta=2 \int_{0}^{\pi} \sqrt{1-4 b(1-b) \sin ^{2}\left(\frac{\theta}{2}\right)} d \theta \\
& =4 \int_{0}^{\pi / 2} \sqrt{1-4 b(1-b) \sin ^{2}(\theta)} d \theta=4 \int_{0}^{\pi / 2} \sqrt{\cos ^{2}(\theta)+(1-2 b)^{2} \sin ^{2}(\theta)} d \theta
\end{aligned}
$$

from which it immediately follows that L has no maximum value and that its minimum value is $L\left(\frac{1}{2}\right)=4$.
(b) For $b \neq \frac{1}{2}$, we conclude from the Leibniz rule (for interchanging differentiation and integration) that $L^{\prime}(b)$ exists. We will now argue that $L^{\prime}\left(\frac{1}{2}\right)$ exists and is equal to 0 . If we let

$$
D(\theta)=\sqrt{\cos ^{2}(\theta)+(1-2 b)^{2} \sin ^{2}(\theta)}+\cos (\theta)
$$

then elementary algebra shows that

$$
\begin{equation*}
\left|\frac{L(b)-L\left(\frac{1}{2}\right)}{b-\frac{1}{2}}\right|=\left|\frac{L(b)-4}{b-\frac{1}{2}}\right|=16\left|b-\frac{1}{2}\right| \int_{0}^{\pi / 2} \frac{\sin ^{2}(\theta)}{D(\theta)} d \theta \tag{1}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\frac{\sin ^{2}(\theta)}{D(\theta)} \leq \frac{1}{\cos (\theta)} \quad \text { for } \quad 0 \leq \theta<\frac{\pi}{2} \tag{2}
\end{equation*}
$$

and that

$$
\begin{equation*}
\frac{\sin ^{2}(\theta)}{D(\theta)} \leq \frac{1}{|1-2 b|} \quad \text { for } \quad 0 \leq \theta \leq \frac{\pi}{2} \tag{3}
\end{equation*}
$$

Let $0<\varepsilon<\frac{\pi}{2}$ be given. Then

$$
\begin{equation*}
\int_{0}^{\pi / 2} \frac{\sin ^{2}(\theta)}{D(\theta)} d \theta=\int_{0}^{(\pi / 2)-\varepsilon} \frac{\sin ^{2}(\theta)}{D(\theta)} d \theta+\int_{(\pi / 2)-\varepsilon}^{\pi / 2} \frac{\sin ^{2}(\theta)}{D(\theta)} d \theta \tag{4}
\end{equation*}
$$

and since $\cos (\theta)$ is decreasing on $\left[0, \frac{\pi}{2}\right)$, it follows from inequality (2) that

$$
\begin{equation*}
\int_{0}^{(\pi / 2)-\varepsilon} \frac{\sin ^{2}(\theta)}{D(\theta)} d \theta \leq \frac{\frac{\pi}{2}}{\cos \left(\frac{\pi}{2}-\varepsilon\right)} \tag{5}
\end{equation*}
$$

From inequality (3) we have

$$
\begin{equation*}
\int_{(\pi / 2)-\varepsilon}^{\pi / 2} \frac{\sin ^{2}(\theta)}{D(\theta)} d \theta \leq \frac{\varepsilon}{|1-2 b|} \tag{6}
\end{equation*}
$$

Then (4), (5) and (6) yield

$$
\begin{equation*}
\int_{0}^{\pi / 2} \frac{\sin ^{2}(\theta)}{D(\theta)} d \theta \leq \frac{\frac{\pi}{2}}{\cos \left(\frac{\pi}{2}-\varepsilon\right)}+\frac{\varepsilon}{|1-2 b|} \tag{7}
\end{equation*}
$$

Combining (1) and (7), we have

$$
\left|\frac{L(b)-L\left(\frac{1}{2}\right)}{b-\frac{1}{2}}\right| \leq \frac{16\left|b-\frac{1}{2}\right| \frac{\pi}{2}}{\cos \left(\frac{\pi}{2}-\varepsilon\right)}+8 \varepsilon<9 \varepsilon
$$

for $\left|b-\frac{1}{2}\right|$ sufficiently small. Since ε was arbitrary, we conclude that $L^{\prime}\left(\frac{1}{2}\right)$ exists and is equal to 0 .

Also solved by MICHEL BATAILLE, Rouen, France; CON AMORE PROBLEM GROUP, The Danish U. of Education, Copenhagen, Denmark; CHIP CURTIS, Missouri Southern State C.; DMITRY FLEISCHMAN, Santa Monica, CA; WEIHU HONG, Clayton C. \& State U.; STEPHEN KACZKOWSKI, Orange County C.C.; MOHAMMAD RIAZI-KERMANI, Fort Hays State U.; LI ZHOU, Polk C. C.; and the proposer. Five incomplete solutions were received.

A matrix operation

759. Proposed by Götz Trenkler, University of Dortmund, Germany

If \mathbf{A} and \mathbf{B} are n by n matrices over an arbitrary field F, define $\mathbf{A} \circ \mathbf{B}$ to be the matrix $\mathbf{A}+\mathbf{B}-\mathbf{A B}$. Find necessary and sufficient conditions on \mathbf{A} such that the equation $\mathbf{A} \circ \mathbf{B}=\mathbf{B} \circ \mathbf{A}=\mathbf{0}$ has a solution, \mathbf{B}.

Solution by Jim Delaney, California Polytechnic State University, San Luis Obispo, CA
This occurs if and only if $\mathbf{I}-\mathbf{A}$ is nonsingular. Note that $\mathbf{A} \circ \mathbf{B}=\mathbf{I}-(\mathbf{I}-\mathbf{A})(\mathbf{I}-\mathbf{B})$ and that $\mathbf{A} \circ \mathbf{B}=\mathbf{0}$ iff $(\mathbf{I}-\mathbf{A})(\mathbf{I}-\mathbf{B})=\mathbf{I}$. Thus, if $\mathbf{A} \circ \mathbf{B}=\mathbf{0}$, then $\mathbf{I}-\mathbf{A}$ is nonsingular. Conversely, if $\mathbf{I}-\mathbf{A}$ is nonsingular and $\mathbf{C}=(\mathbf{I}-\mathbf{A})^{-1}$, then $(\mathbf{I}-\mathbf{A}) \mathbf{C}=$ $\mathbf{C}(\mathbf{I}-\mathbf{A})=\mathbf{I}$. Let $\mathbf{B}=\mathbf{I}-\mathbf{C}$. Then $\mathbf{C}=\mathbf{I}-\mathbf{B}$, so that

$$
(\mathbf{I}-\mathbf{A})(\mathbf{I}-\mathbf{B})=(\mathbf{I}-\mathbf{B})(\mathbf{I}-\mathbf{A})=\mathbf{I} \quad \text { or equivalently } \quad \mathbf{A} \circ \mathbf{B}=\mathbf{B} \circ \mathbf{A}=\mathbf{0} .
$$

Also solved by REZA AKHLAGHI, Big Sandy Community and Technical C.; MICHAEL ANDREOLI, MiamiDade C. (North); MICHEL BATAILLE, Rouen, France; ADAM COFFMAN, Indiana U.-Purdue U.-Fort Wayne; ELLIOTT COHEN, Fontenay-sous-Bois, France; CON AMORE PROBLEM GROUP, The Danish U. of Education, Copenhagen, Denmark; CHIP CURTIS, Missouri Southern State C.; DMITRY FLEISCHMAN, Santa Monica, CA; OVIDIU FURDUI (student), Western Michigan U.; TOMMY GOEBELER, Ursinus C.; NATALIO H. GUERSENZVAIG, Universidad CAECE, Buenos Aires, Argentina; EUGENE A. HERMAN, Grinnell C.; THOMAS MATTMAN, California State U.-Chico; NORTHWESTERN U. MATH PROBLEM SOLVING GROUP; MOHAMMAD RIAZI-KERMANI, Fort Hays State U.; WILLIAM SEAMAN, Albright C.; JOHN HENRY STEELMAN, Indiana U. of Pennsylvania; NORA THORNBER, Raritan Valley C.C.; XIAOSHEN WANG, U. of Arkansas-Little Rock; GREGORY P. WENE, U. of Texas-San Antonio; LI ZHOU, Polk C. C.; and the proposer.

An inequality for an abstract function

760. Proposed by Arthur L. Holshouser, Charlotte, NC

Suppose that f is a given function from the positive integers to the non-negative integers. We define a function g, whose domain is the non-negative integers, as follows: $g(0)=\infty$ and for n a positive integer, $g(n)$ is defined recursively by

$$
g(n) \text { is the smallest } x \text { in }\{1,2, \ldots, n\} \text { such that } f(n)<g(n-x) \text {. }
$$

Note that $g(1)=1$.
(a) If $f(n)$ is the largest power of 2 that divides n, find $g(n)$.
(b) Prove that for any f, if n is a positive integer and $1 \leq x \leq g(n)-1$, then $g(n-x) \leq g(n)-x$.

Solution by John Henry Steelman, Indiana University of Pennsylvania, Indiana, Pennsylvania
(a) We will show that $g(n)=f(n)$ for all $n>0$. Clearly $g(1)=1=f(1)$, so we proceed by induction. Suppose that $g(m)=f(m)$ whenever $0<m<n$. Note that n

