
 2x + 1 > 0. Thus, if g(x, y) is (a positive) prime, we must have 2x - 1 = 1 so that
 x = 1. Since y2 = 2x2 - 1, We see that ly = 1 and g(x, y) = 3.

 Also solved by REZA AKHLAGHI, Big Sandy Community and Technical C.; HERB BAILEY and JOHN
 RICKERT (jointly), Rose-Hulman Institute of Technology; MICHEL BATAILLE, Rouen, France; BRIAN D.
 BEASLEY, Presbyterian C.; DAVID BRESSOUD and STAN WAGON (jointly), Macalester C.; STAN BYRD,
 U. of Tennessee-Chattanooga; MINH CAN, Brooks C.; JOHN CHRISTOPHER, California State U.-Sacramento;
 PHIL CLARKE, Los Angeles Valley C.; ELLIOTT COHEN, Fontenay-sous-Bois, France; CON AMORE PROB-
 LEM GROUP, The Danish U. of Education, Copenhagen, Denmark; CHIP CURTIS, Missouri Southern State C.;
 JIM DELANY, California Polytechnic State U.; HABIB Y. FAR, Montgomery C.; DMITRY FLEISCHMAN,
 Santa Monica, CA; MATT FOSS, North Hennepin C.C.; OVIDIU FURDUI (student), Western Michigan U.;
 G.R.A. 20 MATH PROBLEMS GROUP, Rome, Italy; NATALIO H. GUERSENZVAIG, Universidad CAECE,
 Buenos Aires, Argentina; PETER HOHLER, Aarburg, Switzerland; RICKY IKEDA, Leeward C.C.; KHUDIJA
 JAMIL (student), California State U.-Northridge; ALEXANDER KOONCE, U. of Redlands; KENNETH KO-
 RBIN, New York, NY; HARRIS KWONG, SUNY C. at Fredonia; NORTHWESTERN U. MATH PROBLEM
 SOLVING GROUP; PHILIP OPPENHEIMER, Norwalk, CT; MOHAMMAD RIAZI-KERMANI, Fort Hays
 State U.; SAINT ANSELM C. PROBLEM SOLVERS; WILLIAM SEAMAN, Albright C.; RICHARD M.
 SMITH; JOHN HENRY STEELMAN, Indiana U. of Pennsylvania; DAVID STOLP (student), California State
 U.-Chico; H. T. TANG, Hayward, CA; THOMAS WALES, Cambridge, MA; HONGBIAO ZENG, Fort Hays
 State U.; LI ZHOU, Polk C. C.; and the proposer.

 Editors' notes: Solver John Christopher used the fact that primes congruent to 1 mod-
 ulo 4 can be written as the sum of squares in (essentially) only one way to show that 5
 is the only prime assumed by f (x, y) = (2x2)2 + (y2)2 = (2xy)2 + (y2 - 2x2)2.

 Solvers Michel Bataille, David Bressoud & Stan Wagon, Habib Y. Far, John Henry
 Steelman, and David Stolp considered negative values of the function g(x, y) =
 4x4 - y4 and discovered the following "negative prime" values: g(2, 3) = -17,
 g(12, 17) = -577 and g(408, 577) = -665857. Bressoud and Wagon show that
 these are the only negative prime values with fewer than 800,000 digits that are as-
 sumed by g(x, y), and Far claims that these three values are the only negative prime
 values assumed by g(x, y).

 A critical parameter for a family of polar curves

 758. Proposed by Gregory Dresden, Washington & Lee University, Lexington, VA

 For b a real number, let L (b) be the arc length of the polar graph r = (1 - b) +
 b cos(O) with 0 in the interval [0, 27r].

 (a) Find the extreme values of the function L.

 (b) Find all values b for which the function L is differentiable.

 Solution by William Seaman, Albright College, Reading, PA

 (a) We have

 L(b)= r2 + -7 dOv) 2 -2b(1-b)(1-cos(0))dO

 = 2 1 - 2b(1 - b)(1 - cos(O)) dO = 2 1 - 4b(1 - b)sin2 ( dO

 - 1 - 4b(1 - b) sin2(0) dO = 4 cos2(0) + (1 - 2b)2 sin2() dO
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 from which it immediately follows that L has no maximum value and that its minimum
 value is L (1) = 4.

 (b) For b , we conclude from the Leibniz rule (for interchanging differentiation
 and integration) that L'(b) exists. We will now argue that L'( ) exists and is equal to 0.
 If we let

 D(O) = cos2(0) + (1 - 2b)2 sin2(0) + cos(0)

 then elementary algebra shows that

 L(b) - L (-) L(b) -_ 4 1 s/2 sin2(0) b 16 b - - dO (1)
 b- 1 b- 2 o D(0) 2 2

 Note that

 sin2(o) 1 7r < for 0<0<- (2)
 D(0) - cos() 2

 and that

 sin2() 1 7r < for 0<0<-. (3)
 D(0) - l - 2b - - 2

 Let 0 < E < 1 be given. Then

 7r/2 sin2() d (/2)- sin2 () /2 in2

 2 si(()dO - d + dO (4) o D(0) o D(0) (/2)- D()

 and since cos(0) is decreasing on [0, "), it follows from inequality (2) that 2 $f VIV II1 I~ULLY \jL~L

 (Jr/2)-e sin2(0) dO < 2

 Jo D(0) cos(T - E(5
 From inequality (3) we have

 7r/2 sin2(0) dO < (6) J(r/2)-s D(O) 1 - 2bl
 Then (4), (5) and (6) yield

 /2 in2(0) dO < 2 + (7)
 Jo D(O) cos ( - E) 11 - 2b|

 Combining (1) and (7), we have

 L(b)- L (1) 16 lbc - s( 8)1 2< + 8e < 9E b - cos (I - E)

 for lb - I sufficiently small. Since e was arbitrary, we conclude that L'(1) exists and
 is equal to 0.
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 Also solved by MICHEL BATAILLE, Rouen, France; CON AMORE PROBLEM GROUP, The Danish U.
 of Education, Copenhagen, Denmark; CHIP CURTIS, Missouri Southern State C.; DMITRY FLEISCHMAN,
 Santa Monica, CA; WEIHU HONG, Clayton C. & State U.; STEPHEN KACZKOWSKI, Orange County C.C.;
 MOHAMMAD RIAZI-KERMANI, Fort Hays State U.; LI ZHOU, Polk C. C.; and the proposer. Five incomplete
 solutions were received.

 A matrix operation
 759. Proposed by Gitz Trenkler, University of Dortmund, Germany

 If A and B are n by n matrices over an arbitrary field F, define A o B to be the matrix
 A + B - AB. Find necessary and sufficient conditions on A such that the equation
 A o B = B o A = 0 has a solution, B.

 Solution by Jim Delaney, California Polytechnic State University, San Luis Obispo, CA

 This occurs if and only if I - A is nonsingular. Note that A o B = I - (I - A)(I - B)
 and that AoB = 0 iff (I - A)(I - B) = I. Thus, if AoB = 0, then I - Ais non-
 singular. Conversely, if I - A is nonsingular and C = (I - A)-1, then (I - A)C =
 C(I - A) = I. Let B = I - C. Then C = I - B, so that

 (I - A)(I - B) = (I - B)(I - A) = I or equivalently AoB=BoA=0.

 Also solved by REZA AKHLAGHI, Big Sandy Community and Technical C.; MICHAEL ANDREOLI, Miami-
 Dade C. (North); MICHEL BATAILLE, Rouen, France; ADAM COFFMAN, Indiana U.-Purdue U.-Fort Wayne;
 ELLIOTT COHEN, Fontenay-sous-Bois, France; CON AMORE PROBLEM GROUP, The Danish U. of Edu-
 cation, Copenhagen, Denmark; CHIP CURTIS, Missouri Southern State C.; DMITRY FLEISCHMAN, Santa
 Monica, CA; OVIDIU FURDUI (student), Western Michigan U.; TOMMY GOEBELER, Ursinus C.; NATALIO
 H. GUERSENZVAIG, Universidad CAECE, Buenos Aires, Argentina; EUGENE A. HERMAN, Grinnell C.;
 THOMAS MATTMAN, California State U.-Chico; NORTHWESTERN U. MATH PROBLEM SOLVING
 GROUP; MOHAMMAD RIAZI-KERMANI, Fort Hays State U.; WILLIAM SEAMAN, Albright C.; JOHN
 HENRY STEELMAN, Indiana U. of Pennsylvania; NORA THORNBER, Raritan Valley C.C.; XIAOSHEN
 WANG, U. of Arkansas-Little Rock; GREGORY P. WENE, U. of Texas-San Antonio; LI ZHOU, Polk C. C.;

 and the proposer.

 An inequality for an abstract function
 760. Proposed by Arthur L. Holshouser Charlotte, NC

 Suppose that f is a given function from the positive integers to the non-negative inte-
 gers. We define a function g, whose domain is the non-negative integers, as follows:
 g(O) = oo and for n a positive integer, g(n) is defined recursively by

 g(n) is the smallest x in {1, 2, ...., n} such that f(n) < g(n - x).
 Note that g(1) = 1.

 (a) If f(n) is the largest power of 2 that divides n, find g(n).

 (b) Prove that for any f, if n is a positive integer and 1 < x < g(n) - 1, then
 g(n - x) < g(n) - x.

 Solution by John Henry Steelman, Indiana University of Pennsylvania, Indiana, Penn-
 sylvania

 (a) We will show that g(n) = f(n) for all n > 0. Clearly g(1) = 1 = f(1), so we
 proceed by induction. Suppose that g(m) = f (m) whenever 0 < m < n. Note that n
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