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The idea for this article came from a recent problem in the College Mathematics
Journal which asked for the area of one of the four inner loops in the following picture.

Figure 1. An epitrochoid with four-fold symmetry.

This particular figure is called an epitrochoid [2, 3] and according to Lawrence [3] it
dates back to Alfred Dürer’s work in 1525. It is described by the parametric equations

x(t) = 2 cos t+ cos 5t,

y(t) = 2 sin t+ sin 5t.
(1)

An obvious question is why Figure 1 has four-fold symmetry despite the presence of
the terms cos 5t and sin 5t in equations (1). To answer this question, we need to re-
write the above pair of equations as a single complex-valued equation. If we let x(t)
and y(t) be the real and imaginary part, respectively, of z(t), and if we make use of
Euler’s identity eiθ = cos θ + i sin θ, then equations (1) become

z(t) = x(t) + iy(t) = 2eit + e5it = eit
(
2 + e4it

)
, (2)

and now the four-fold symmetry is revealed. To be precise, we note that since equation
(2) tells us that z(t) = eit(2 + e4it), then

z(t+ π/2) = eiπ/2z(t),
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which tells us that z(t+ π/2) has the same modulus as z(t) and is rotated 90◦ coun-
terclockwise on the complex plane. See Farris [1, Ch. 3] and Mutalik [4] for more
examples of this kind of symmetry argument.

We can see that moving to complex variables actually simplifies the situation (if
you’ll forgive the atrocious pun). This does lead to another question: what other dis-
coveries can we make by writing parametric curves in terms of complex variables?

An imperfect nesting To generate a second curve, we decide to make the simplest
possible change to equation (2): we replace the e4it with e−4it, giving us the new
equation

z(t) = eit
(
2 + e−4it

)
. (3)

When we convert back to Cartesian coordinates, we get a new set of equations,

x(t) = 2 cos t+ cos 3t,

y(t) = 2 sin t− sin 3t,
(4)

and this now describes a figure called a hypotrochoid [2, 3]. Figure 2 shows the hy-
potrochoid from equations (4) in blue, nested together with the epitrochoid from equa-
tions (1) in red.

Figure 2. A not-quite-perfect nesting of a red epitrochoid and blue hypotrochoid.

From looking at the complex-variable equations eit (2 + e4it) for the earlier epitro-
choid and eit (2 + e−4it) for the current hypotrochoid, we can see that not only do both
have four-fold symmetry but also they clearly intersect each other when the parameter
t is a multiple of π/4, thanks to the convenient fact that eiπ = e−iπ. Coincidentally,
these intersections are when the polar angle θ is a multiple of π/4, and this explains
why the two curves are nested together as seen in Figure 2. These intersections are
also at the maximal modulus and minimal modulus (3 and 1, respectively) for the two
complex-variable equations. As we will show later, we can even improve this nesting
by slightly altering the graphs.

Epitrochoids and hypotrochoids are often discussed together, as they are both
formed by taking a point attached to the radius of one circle that is rolling around the
circumference of a second circle. However, we have not seen them actually drawn
together as in Figure 2 above and Figures 4 and 5 below. Thanks to our decision to
work with complex variables, it was the similarities between equations (2) and (3) that
led to our decision to draw them together (as in Figure 2 above) and subsequently led
to the other discoveries in this article.

But first, a warning about a common pitfall when talking about complex-variable
parametric equations.
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The parameter is not always polar It might be tempting to think of the param-
eter t as measuring the polar angle θ of the point (x(t), y(t)) on the Cartesian plane.
While the epitrochoid and hypotrochoid from Figure 2 do indeed intersect each other
at the polar angle θ = 0 when t = 0 (and likewise at θ and t equal to multiples of
π/4 as mentioned above), this is not the case in general. In fact, as the parameter t
increases slightly from t = 0, the polar angle θ for the point on the hypotrochoid ac-
tually decreases from θ = 0 before then increasing. We can see this by tracing out the
path of the point (x(t), y(t)) for the hyptrochoid given by equations (4) as t increases
from t = 0 in multiples of π/12, as shown here in Figure 3. Note that at t = π/12 the
polar angle θ is slightly negative, and at t = 2π/12 we have θ = 0. Clearly, t and θ
are not always the same.

Figure 3. Path of hypotrochoid for small values of t.

A perfect nesting If we move from four-fold to six-fold symmetry by using the
equations z(t) = eit (2 + e6it) and z(t) = eit (2 + e−6it), we might be surprised at
how well the two graphs fit together.

Figure 4. Best possible nesting.

On the left of Figure 4 we have the epitrochoid in red with six-fold symmetry, and
in the middle is the corresponding six-fold hypotrochoid in blue. On the right we can
see how they fit together perfectly; not only do they intersect and are tangent at the
six “inside” and the six “outside” points at radius 1 and 3 respectively, but also they
intersect and are tangent at the twelve “middle” points, each at radius

√
3. There are,

in all, 24 points of tangency. (See Figure 6 for clarity.)
As we will now show, we can also achieve this kind of perfect nesting for the four-

fold symmetric figures, and in fact for k-fold symmetry for all values of k > 2. All we
have to do is modify our equations just a little bit.
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A more perfect nesting
For context, we show in Figure 5 the best possible nestings for the four, six, and
thirteen-fold symmetric epitrochoids and hypotrochoids. The epitrochoids are in solid
red, and the hypotrochoids in dashed blue. The scale is the same in all three.

Figure 5. More perfect nestings for k = 4, 6, and 13.

We say this is a perfect nesting when the epitrochoid and hypotrochoid of k-fold
symmetry are tangent at k points of intersection on the inside, 2k points of intersection
in the middle, and k points of intersection on the outside. See Figure 6.

Figure 6. Points of intersection and tangency.

We mentioned earlier that we can achieve perfect nesting if we “... modify our
equations just a little bit”. As the following theorem shows, we simply need to modify
the 2 in equations (1) and (4) to a new value that is dependent on k.

Theorem 1 (Nesting Theorem). For the epitrochoid (xe(t), ye(t)) and hypotro-
choid (xh(t), yh(t)) of k-fold symmetry defined as

xe(t) = Ak cos t+ cos(k + 1)t, xh(t) = Ak cos t+ cos(k − 1)t,

ye(t) = Ak sin t+ sin(k + 1)t, yh(t) = Ak sin t− sin(k − 1)t,

with k > 2, then we have perfect nesting when Ak = cscπ/k. Furthermore, the radii
of intersections are cscπ/k − 1 and cscπ/k + 1 for the inside and outside points,
and cotπ/k for the middle points.

As an example, we note that for k = 6 then this theorem tells us that A6 =
cscπ/6 = 2, which gives us the perfect nesting in Figure 4, and it tells us that the
radii of intersections are cscπ/6 − 1, cscπ/6 + 1, and cotπ/6 which give us the
values 1, 3, and

√
3 as mentioned earlier.
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Likewise, for k = 4 the epitrochoid and hypotrochoid in equations (1) and (4) as
seen in Figure 2 do not have perfect nesting. To achieve the perfect nesting, we would
simply need to replace the 2 in equations (1) and (4) with A4 = cscπ/4 =

√
2; the

result is seen in the picture on the left of Figure 5.

Proof of Theorem 1. As mentioned earlier, there are inherent advantages in writing our
Cartesian equations in terms of complex variables. In doing this for the equations in
the statement of Theorem 1, we get

ze(t) = eit
(
Ak + eikt

)
and zh(t) = eit

(
Ak + e−ikt

)
(5)

for the epitrochoid and hypotrochoid, respectively. We can now see that both curves
have k-fold rotational symmetry since

ze(t+ 2π/k) = ei2π/kze(t) and zh(t+ 2π/k) = ei2π/kzh(t), (6)

telling us that when we increase t by 2π/k we get a point with the same modulus but
rotated 2π/k counterclockwise.

At this point, we could simply study a sector of angular width 2π/k and then appeal
to the k-fold symmetry. However, we can do a bit more. Since

ze(−t) = ze(t) and zh(−t) = zh(t), (7)

then both graphs are symmetric across the x-axis as well. This means that we need
only focus our attention on the sector in the first quadrant from the horizontal axis
to the ray at polar angle θ = π/k measured counterclockwise from the horizontal.
By symmetry above/below the x-axis, we can copy this below the x axis (giving us
a sector from angle −π/k up to π/k) and then from our k-fold symmetry we can
multiply this sector by k to give us the entire shape. See Figure 7 for an illustration.

Figure 7. By symmetry, we need only consider this one sector from θ = 0 to θ = π/k.

With this in mind, we start by showing that the two curves do indeed intersect at the
outside and inside points by noting that

ze(0) = Ak + 1 = zh(0)

and

ze(π/k) = eiπ/k(Ak − 1) = zh(π/k).

The moduli of these complex numbers above are Ak + 1 and Ak − 1, giving us
the outside and inside radii of intersection as mentioned in the theorem. Since these
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are the maximum and minimum values, respectively, for the moduli of the two curves,
then we know that both curves are in fact tangent to the circle of radius Ak + 1 (on the
outside) or Ak − 1 (on the inside) at those points of intersection and hence are tangent
to each other.

We now turn our attention to the middle points of intersection, as seen in Figure
7. Here, things are a little bit more difficult because the epitrochoid and hypotrochoid
actually “intersect” at that middle point at different values of the paramenter t. To be
precise, we set ϕ = π/2k − π/k2 and we will show that

ze(ϕ+ π/k) = zh(ϕ− π/k) (8)

and that their moduli is cotπ/k. We can then appeal to symmetry to cover the other
2k − 1 middle points. (We should note that we only arrived at equation (8) after a
considerable amount of guess-and-check.)

For the left-hand side of equation (8), we use the equation on the left of equation
(5), replacing Ak with cscπ/k and replacing t with ϕ+ π/k, to get

ze(ϕ+ π/k) = eiϕeiπ/k
(
cscπ/k + eiπ/2e−iπ/keiπ

)
= eiϕ

(
eiπ/k cscπ/k + eiπ/2eiπ

)
= eiϕ

(
cosπ/k + i sinπ/k

sinπ/k
− i

)
= eiϕ cotπ/k.

Likewise, for the right-hand side of equation (8), we use the equation on the right of
equation (5) but this time replacing t with ϕ− π/k, to get

zh(ϕ− π/k) = eiϕe−iπ/k
(
cscπ/k + e−iπ/2eiπ/keiπ

)
= eiϕ

(
e−iπ/k cscπ/k + e−iπ/2eiπ

)
= eiϕ

(
cosπ/k − i sinπ/k

sinπ/k
+ i

)
= eiϕ cotπ/k.

This verifies equation (8), as desired.
It remains to show that the two curves are tangent at that point of equality in equa-

tion (8). For this, we recall that the slope of the tangent line to a parametric curve
(x(t), y(t)) is given by (dy/dt)/(dx/dt). Once more we rely on complex variables
to simplify the problem, thanks to the nice property that if z(t) = x(t) + iy(t) then
dx/dt = Re z′(t) and dy/dt = Im z′(t), for the real and imaginary parts respectively.
Thus, referring back to equation (8), if we can also show that

z′e(ϕ+ π/k) = z′h(ϕ− π/k) (9)

then this implies the real and the imaginary parts of equation (9) are the same, and so
the slopes of the tangent lines are the same at that point of intersection.

For the left-hand side of equation (9), we write ze(t) = Ake
it + ei(1+k)t, so that

z′e(t) = iAke
it + i(1 + k)ei(1+k)t

= ieit
(
Ak + (1 + k)eikt

)
(10)
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Now, for t = ϕ+ π/k as seen on the left of equation (9), and with ϕ = π/2k − π/k2

as before, we note that

kt = (π/2− π/k) + π

and so

eikt = eiπ/2e−iπ/keiπ = −ie−iπ/k.

This means that equation (10) becomes

z′e(ϕ+ π/k) = ieiϕeiπ/k
(
Ak − i(1 + k)e−iπ/k

)
= ieiϕ

(
Ake

iπ/k − i(1 + k)
)
. (11)

Keeping that aside for now, we next turn to the right-hand side of equation (9). We
write zh(t) = Ake

it + ei(1−k)t, which means that

z′h(t) = iAke
it + i(1− k)ei(1−k)t

= ieit
(
Ak + (1− k)e−ikt

)
(12)

Now, for t = ϕ − π/k as seen on the right of equation (9), and with ϕ = π/2k −
π/k2 as before, we note that this time,

kt = (π/2− π/k)− π

and so

e−ikt = e−iπ/2eiπ/keiπ = ieiπ/k.

This means that equation (12) becomes

z′h(ϕ− π/k) = ieiϕe−iπ/k
(
Ak + i(1− k)eiπ/k

)
= ieiϕ

(
Ake

−iπ/k + i(1− k)
)
. (13)

We now compare equations (11) and (13) to show that they are indeed equal to each
other. We start with the expression inside the parenthesis in (11), which is(

Ake
iπ/k − i(1 + k)

)
=

cosπ/k + i sinπ/k

sinπ/k
− i(1 + k) = cotπ/k − ik. (14)

Likewise, the expression inside the parenthesis in equation (13) is(
Ake

−iπ/k + i(1− k)
)
=

cosπ/k − i sinπ/k

sinπ/k
+ i(1− k) = cotπ/k − ik.

(15)
Since these are the same, then equations (11) and (13) are equal to each other, which
establishes the equality in (9), thus showing that the two curves are indeed tangent, as
desired.
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A surprising slope
The highlight in the proof of Theorem 1 was showing that the epitrochoid and hypotro-
choid are indeed tangent at the middle point of intersection as seen in Figure 6. This
slope exhibits a rather unusual behavior as we increase the value of k, as shown here
in Figure 8. Despite the large value of k for the graphs on the right of Figure 8, the

Figure 8. Tangent line at first middle point of intersection for k = 7 and k = 2000.

teardrop shapes for the epitrochoid (in solid red) and the hypotrochoid (in dashed blue)
remain slightly askew, which means the tangent line at that middle point of intersec-
tion is not horizontal, nor will it approach horizontal even as k continues to increase.
In fact, the limiting value for the slope of this tangent line is rather surprising.

Theorem 2 (Slope Theorem). For the epitrochoid and hypotrochoid in Theorem 1
with perfect nesting at Ak = cscπ/k, the slope of the tangent line at the first middle
point of intersection above the x-axis approaches 1/π as k → ∞.

Proof. Recall from our discussion in the proof of Theorem 1 that the slope of the
tangent line is equal to (dy/dt)/(dx/dt) which is equal to Im z′(t)/Re z′(t). We
look now to equation (11) which gives us the derivative z′ of the epitrochoid (and the
hypotrochoid as well) at the point of intersection as

z′ = ieiϕ
(
Ake

iπ/k − i(1 + k)
)
,

where ϕ = π/2k − π/k2. Thanks to equation (14) this becomes

z′ = ieiϕ (cotπ/k − ik) = i (cosϕ+ i sinϕ) (cotπ/k − ik) ,

and if we multiply this out and simplify then we obtain

z′ = (k cosϕ− cotπ/k sinϕ) + i (k sinϕ+ cotπ/k cosϕ) .

Since the slope is m = Im z′/Re z′, we get

m =
k sinϕ+ cotπ/k cosϕ

k cosϕ− cotπ/k sinϕ
.

We multiply top and bottom by sinπ/k to obtain

m =
k sinπ/k sinϕ+ cosπ/k cosϕ

k sinπ/k cosϕ− cosπ/k sinϕ
.
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We can now take the limit as k → ∞. Recall that ϕ = π/2k − π/k2, so as k → ∞
then ϕ → 0. A simple application of L’Hôpital’s rule tells us that k sinπ/k approaches
π as k → ∞, and so

m → π sin 0 + cos 0 cos 0

π cos 0− cos 0 sin 0
=

1

π
,

as desired.

Conclusion
As we have seen, the epitrochoid and hypotrochoid reveal some surprising secrets
when written in complex variables. We can only wonder what other parametric curves
might benefit from a similar treatment.

Summary. Two classic plane curves, the epitrochoid and hypotrochoid, can be placed together
in an optimal nested form. We find the appropriate equations by way of complex variables, and
we also get a surprising answer for the slope of a particular tangent line.
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