Matchings in a certain family of graphs February 2020 2090. Proposed by Gregory Dresden, Washington & Lee University, Lexington, VA. Recall that a *matching* of a graph is a set of edges that do not share any vertices. For example, C_4 , the cyclic graph on four vertices (i.e., a square), has seven matchings: the empty set, single edges (four of these), or pairs of opposite edges (two of these). Let G_n be the (undirected) graph with vertices x_i and y_i , $0 \le i \le n - 1$, and edges $\{x_i, x_{i+1}\}, \{x_i, y_i\}$, and $\{y_i, x_{i+1}\}, 0 \le i \le n - 1$, where the indices are to be taken modulo n. For example, G_4 is shown below. Determine the number of matchings of G_n . Solution by the George Washington University Problems Group, George Washington University, Washington, DC. The answer is 3^n . To see this, let $S = \{-1, 0, 1\}^n$, a set whose cardinality is clearly 3^n . We show that there is a bijection ϕ from S to the set of matchings of G_n . Let $a = (a_1, \ldots, a_n)$ be an element of S. We define $\phi(a)$ as follows: $$\{x_i, x_{i+1}\} \in \phi(a)$$ if and only if $a_i = 1$ and $a_{i+1} = -1$, $\{x_i, y_i\} \in \phi(a)$ if and only if $a_i = 1$ and $a_{i+1} \neq -1$, and $\{x_{i+1}, y_i\} \in \phi(a)$ if and only if $a_i \neq 1$ and $a_{i+1} = -1$. We now check that $\phi(a)$ is indeed a matching. The edges incident to y_i are not both in $\phi(a)$, since $\{x_i, y_i\} \in \phi(a)$ requires $a_i = 1$ but $\{x_{i+1}, y_i\} \in \phi(a)$ requires $a_i \neq 1$. Also, among the four edges incident to x_i , at most one can be chosen for $\phi(a)$, since including $\{x_i, x_{i-1}\}$, $\{x_i, y_{i-1}\}$, $\{x_i, y_i\}$, and $\{x_i, x_{i+1}\}$ require, respectively, the four mutually exclusive conditions (1) $a_i = -1$ and $a_{i-1} = 1$, (2) $a_i = -1$ and $a_{i-1} \neq 1$, (3) $a_i = 1$ and $a_{i+1} \neq -1$, and (4) $a_i = 1$ and $a_{i+1} = -1$. Given a matching M, there is a unique $a \in S$ so that M is $\phi(a)$. To see this, let $a_i = 1$ if M contains $\{x_i, x_{i+1}\}$ or $\{x_i, y_i\}$, let $a_i = -1$ if M contains $\{x_{i-1}, x_i\}$ or $\{x_i, y_{i-1}\}$, and let $a_i = 0$ if x_i is not the endpoint of any edge in M. This element $a \in S$ is the only element in $\phi^{-1}(M)$. Hence ϕ is bijective. Also solved by Elton Bojaxhiu (Germany) and Enkel Hysnelaj (Australia), Robert Calcaterra, Jiakang Chen, Eddie Cheng; Serge Kruk; Li Li & László Lipták (jointly), José H. Nieto (Venezuela), Kishore Rajesh, Edward Schmeichel, John H. Smith, and the proposer. There was one incomplete or incorrect solution. ## **Answers** Solutions to the Quickies from page 72.