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which is the desired relation.

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Albert Stadler
(Switzerland), and the proposer. There were two incomplete or incorrect solutions.

Find the normalizer April 2021

2120. Proposed by Gregory Dresden, Jackson Gazin (student), and Kathleen McNeill
(student), Washington & Lee University, Lexington, VA.

Recall that the normalizer of a subgroup H of G is defined as

NG(H) =
{
g ∈ G|ghg−1 ∈ H for all h ∈ H

}
.

Determine NG(H), when G = GL2(R), the group of all invertible 2× 2 matrices with
real entries, and

H = SO2(R) =
{(

cos θ − sin θ
sin θ cos θ

)∣∣∣∣ θ ∈ R
}

.

Solution by Eugene A. Herman, Grinnell College, Grinnell, IA.
More generally, for any n ≥ 1, let G = GLn(R) and H = SOn(R), the subgroup of
On(R), the group of orthogonal matrices, consisting of matrices whose determinant is
1. We will show that

NG(H) = {aU |a ∈ R− {0}, U ∈ On(R) } .

Suppose A = aU , where a ̸= 0 and U is orthogonal. Then for any M ∈ SOn(R),

AMA−1 = aUM
1
a

U−1 = UMU−1.

Since

det(UMU−1) = det(U) det(M)/ det(U) = 1,

and the product of orthogonal matrices is orthogonal, we see that AMA−1 ∈ SOn(R).
For the converse, we use a polar decomposition. For A ∈ NG(H), write A = PU ,

where P is positive-definite and U is orthogonal. For any M ∈ SOn(R), let N =
U−1MU . Then N ∈ SOn(R), so ANA−1 ∈ SOn(R). But

ANA−1 = P(UNU−1)P−1 = PMP−1,

so P ∈ NG(H). Therefore, it remains only to determine which positive-definite
matrices are in the normalizer. Now every positive-definite matrix can be written
as P = V DV −1, where D = diag(d1, . . . , dn) is a diagonal matrix with di > 0 and
V ∈ On(R). For any M ∈ SOn(R), let N = V MV −1. Then B = PNP−1 ∈ SOn(R)
and

B = V DMD−1V −1 ∈ SOn(R), so DMD−1 = V −1BV ∈ SOn(R).

Therefore, D ∈ NG(H).
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For k > 1, let Mk = [mij ], where

m11 = 0, m1k = −1, mk1 = 1, mkk = 0, mii = 1 (i ̸= 1, k), and mi,j = 0 otherwise.

Then R ∈ SOn(R) and the first column of DRD−1 consists of zeros except the kth
entry, which is dk/d1. Since DRD−1 is orthogonal, this column must have length 1,
which means that dk = d1 for all k > 1. Therefore D is a positive multiple of the
identity, and so A is a multiple of an orthogonal matrix.

Note: The same proof works for the complex version. In that case, G = GLn(C)
and H = SUn(C), where the latter is the group of n× n unitary matrices whose deter-
minant equals 1. Then NG(H) is the group of all nonzero complex multiples of n× n
unitary matrices.

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Robert Calcaterra,
Eagle Problem Solvers (Georgia Southern University), John Fitch, Dmitry Fleischman, Mark
Kaplan & Michael Goldenberg, Koopa Tak Lun Koo (Hong Kong), Didier Pinchon (France),
Albert Stadler (Switzerland) and the proposers. There were two incomplete or incorrect solutions.

Answers

Solutions to the Quickies from page 158.

A1119. The aces divide the 48 other cards into 5 “urns”, with a, b, c, d, and e non-
aces in them, respectively. The position of the third ace is equal to a + b + c + 3, so
the expected value of its position is E[a + b + c + 3]. By linearity of expectation, this
is E[a] + E[b] + E[c] + 3. Because a non-ace is equally likely to be placed in any
of the five “urns”, E[a] = . . . = E[e]. Since E[a + b + c + d + e] = 48, we have
E[a] = . . . = E[e] = 48

5 .
Therefore the expected value is

3 · 48
5

+ 3 = 159
5

.

A1120. Let S, S1, S2, and S3 be the areas of △ABC,△XBC,△XCA, and △XAB,
respectively. Let h2 and h3 be the heights of△XCA and△XAB with AX as base. Let
θ be the angle between

←→
AX and

←→
BC. Then

S2 + S3 = 1
2

(h2 + h3) R1 = 1
2
a sin θR1 ≤

1
2
aR1.

Similar arguments give

S3 + S1 ≤
1
2
bR2 and S1 + S2 ≤

1
2
cR3.

Therefore

1
2
aR1 + 1

2
bR2 + 1

2
cR3 ≥ (S2 + S3) + (S3 + S1) + (S1 + S2) = 2S = r(a + b + c)

and the result follows.
Equality holds if and only if the line through a vertex and X and the line containing

the side opposite the vertex are perpendicular. In other words, X must be the ortho-
center of the triangle, which must be acute in order for X to lie in its interior.

Note. Let O and R be the circumcenter and the circumradius for a given acute
triangle. Since R1 = R2 = R3 = R, we obtain Euler’s inequality R ≥ 2r .


