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The idea for this article came from a recent problem [1] in the College Mathematics
Journal which asked for the area of one of the four inner loops in Figure 1.

Figure 1. An epitrochoid with four-fold symmetry.

This particular figure is called an epitrochoid [3, 4] and according to Lawrence [4] it
dates back to Alfred Dürer’s work in 1525. It is described by the parametric equations

x(t) = 2 cos t+ cos 5t,

y(t) = 2 sin t+ sin 5t.
(1)

An obvious question is why Figure 1 has four-fold symmetry despite the presence
of the terms cos 5t and sin 5t in equations (1). To answer this question, we can re-
write the above pair of equations as a single complex-valued equation. If we let x(t)
and y(t) be the real and imaginary part, respectively, of z(t), and if we make use of
Euler’s identity eit = cos t+ i sin t, then equations (1) become

z(t) = x(t) + iy(t) = 2eit + e5it = eit
(
2 + e4it

)
, (2)

and now the four-fold symmetry is revealed. To be precise, we note that since equation
(2) tells us that z(t) = eit(2 + e4it), then

z(t+ π/2) = eiπ/2z(t),
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which tells us that z(t+ π/2) has the same modulus as z(t) and is rotated 90◦ coun-
terclockwise on the complex plane. See Farris [2, Ch. 3] and Mutalik [5] for more
examples of this kind of symmetry argument.

We can see that moving to complex variables actually simplifies the situation (if
you’ll forgive the atrocious pun). This does lead to another question: what other dis-
coveries can we make by writing parametric curves in terms of complex variables?

An imperfect nesting To generate a second curve, we decide to make the simplest
possible change to equation (2): we replace the e4it with e−4it, giving us the new
equation

z(t) = eit
(
2 + e−4it

)
. (3)

When we convert back to Cartesian coordinates, we get a new set of equations,

x(t) = 2 cos t+ cos 3t,

y(t) = 2 sin t− sin 3t,
(4)

and this now describes a figure called a hypotrochoid [3, 4]. Figure 2 shows the dashed
hypotrochoid from equations (4), nested inside the solid epitrochoid from equations
(1).

Figure 2. A not-quite-perfect nesting of a solid epitrochoid and dashed hypotrochoid.

From looking at the complex-variable equations eit (2 + e4it) for the earlier epitro-
choid and eit (2 + e−4it) for the current hypotrochoid, we can see that not only do both
have four-fold symmetry but also they clearly intersect each other when the parameter
t is a multiple of π/4, thanks to the convenient fact that eiπ = e−iπ. Coincidentally,
these intersections occur when the polar angle θ is a multiple of π/4, and this explains
why the two curves are nested together as seen in Figure 2. These intersections are
also at the maximal modulus and minimal modulus (3 and 1, respectively) for the two
complex-variable equations. As we will show later, we can even improve this nesting
by slightly altering the graphs.

Epitrochoids and hypotrochoids are often discussed together, as they are both
formed by tracing the path of a point attached to the radius of one circle that is rolling
around the outside (for an epitrochoid) or inside (for a hypotrochoid) of another circle.
However, we have not seen them actually drawn together as in Figure 2 above and
Figures 4 and 6 below. Thanks to our decision to work with complex variables, it was
the similarities between equations (2) and (3) that led to our decision to draw them
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together (as in Figure 2 above) and subsequently led to the other discoveries in this
article.

But first, a warning about a common pitfall when talking about complex-variable
parametric equations.

The parameter is not always polar It might be tempting to think of the parameter
t as measuring the polar angle θ of the point (x(t), y(t)) on the Cartesian plane. While
the epitrochoid and hypotrochoid from Figure 2 do indeed intersect each other at the
polar angle θ = 0 when t = 0 (and likewise at θ and t equal to multiples of π/4 as
mentioned above), this is not the case in general. In fact, as the parameter t increases
slightly from t = 0, the polar angle θ for the point on the hypotrochoid actually de-
creases from θ = 0 before then increasing. We can see this by tracing out the path of
the point (x(t), y(t)) for the hypotrochoid given by equations (4) as t increases from
t = 0 in multiples of π/12, as shown in Figure 3. The origin (not shown) is located to
the left of this graph. Note that at t = π/12 the polar angle θ is slightly negative, and
at t = 2π/12 we have θ = 0. Clearly, t and θ are not always the same.

Figure 3. Path of hypotrochoid for small values of t.

A perfect nesting If we move from four-fold to six-fold symmetry by using the
equations z(t) = eit (2 + e6it) and z(t) = eit (2 + e−6it), we might be surprised at
how well the two graphs fit together.

Figure 4. Best possible nesting.

On the left of Figure 4 we have the (solid) epitrochoid with six-fold symmetry, and
in the middle is the corresponding six-fold (dashed) hypotrochoid. On the right we
can see how they fit together perfectly. The two curves in Figure 4 intersect and are
tangent at six “inside” and six “outside” points (just like how the two curves in Figure
2 intersect at four “inside” and four “outside” points). However, these two curves in
Figure 4 also intersect and are tangent at twelve “middle” points. See Figure 7 for
clarity on what we mean by “inside”, “middle”, and “outside” points.
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In Figure 5 we have drawn all twenty-four intersection points for the two curves in
Figure 4; the six outside and six inside points of intersection are drawn as solid black
dots, and the twelve middle points are drawn as hollow dots. Furthermore, all the six
inside points are on a circle of radius 1, the twelve middle points on a circle of radius√
3, and the six outer points at radius 3; we have drawn these circles as dotted curves.

Figure 5. All 24 points of intersection from Figure 4 live on just three circles

As we will now show, we can also achieve this kind of perfect nesting for the four-
fold symmetric figures, and in fact for k-fold symmetry for all values of k > 2. All we
have to do is modify our equations just a little bit.

A more perfect nesting
For context, we show in Figure 6 the best possible nestings for the four, six, and
thirteen-fold symmetric epitrochoids and hypotrochoids. The epitrochoids are drawn
with solid curves, and the hypotrochoids with dashed curves. The scale is the same in
all three.

Figure 6. More perfect nestings for k = 4, 6, and 13.

We say this is a perfect nesting when the epitrochoid and hypotrochoid of k-fold
symmetry are tangent at k points of intersection on the inside, 2k points of intersection
in the middle, and k points of intersection on the outside. See Figure 7.

We mentioned earlier that we can achieve perfect nesting if we “... modify our
equations just a little bit”. As the following theorem shows, we simply need to modify
the “2” in equations (1) and (4) to a new value that is dependent on k.
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Theorem 1 (Nesting Theorem). For the epitrochoid (xe, ye) and hypotrochoid
(xh, yh) of k-fold symmetry defined as

(xe, ye) = (Ak cos t+ cos(k + 1)t, Ak sin t+ sin(k + 1)t),

(xh, yh) = (Ak cos t+ cos(k − 1)t, Ak sin t− sin(k − 1)t)

with k > 2, we have perfect nesting when Ak = csc(π/k). Furthermore, the inside
and outside points of intersection are on circles of radii csc(π/k)− 1 and csc(π/k) +
1 respectively, and the middle points are on a circle of radius cot(π/k).

inside
middle

outside

Figure 7. Points of intersection and tangency.

As an example, we note that for k = 6 this theorem tells us that A6 = csc(π/6) =
2, which gives us the perfect nesting in Figure 4, and it tells us that the radii of
the circles for the intersection points are csc(π/6)− 1, csc(π/6) + 1, and cot(π/6)
which give us the circles of radii 1, 3, and

√
3 as seen in Figure 5. Our epitrochoid and

hypotrochoid equations in this case would be

(xe, ye) = (2 cos t+ cos 7t, 2 sin t+ sin 7t),

(xh, yh) = (2 cos t+ cos 5t, 2 sin t− sin 5t).

Likewise, for k = 4 the epitrochoid and hypotrochoid in equations (1) and (4) as
seen in Figure 2 do not have perfect nesting. To achieve the perfect nesting, we would
simply need to replace the 2 in equations (1) and (4) with A4 = csc(π/4) =

√
2; the

result is seen in the picture on the left of Figure 6. The corresponding equations for the
epitrochoid and hypotrochoid would be

(xe, ye) = (
√
2 cos t+ cos 5t,

√
2 sin t+ sin 5t),

(xh, yh) = (
√
2 cos t+ cos 3t,

√
2 sin t− sin 3t).

The reader should compare these to the not-quite-perfect equations (1) and (4).

Proof of Theorem 1. As mentioned earlier, there are inherent advantages in writing
our Cartesian equations in terms of complex variables. Starting with the equations for
the epitrochoid in the statement of Theorem 1, we define ze(t) as xe(t) + iye(t). This
gives us

ze(t) = Ak(cos t+ i sin t) + (cos(k + 1)t+ i sin(k + 1)t),
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and when we apply Euler’s identity and simplify, we get

ze(t) = Ake
it + ei(k+1)t = eit

(
Ak + eikt

)
. (5)

Likewise, with the equations for the hypotrochoid in the statement of Theorem 1, we
define zh(t) as xh(t) + iyh(t). This gives us

zh(t) = Ak(cos t+ i sin t) + (cos(k − 1)t− i sin(k − 1)t),

and when we again apply Euler’s identity and then simplify, we get

zh(t) = Ake
it + e−i(k−1)t = eit

(
Ak + e−ikt

)
. (6)

We can now clearly see that both curves have k-fold rotational symmetry since

ze(t+ 2π/k) = ei2π/kze(t) and zh(t+ 2π/k) = ei2π/kzh(t),

telling us that when we increase t by 2π/k we get a point with the same modulus but
rotated 2π/k counterclockwise.

At this point, we could simply study a sector of angular width 2π/k and then appeal
to the k-fold symmetry. However, we can do a bit more. Since

ze(−t) = ze(t) and zh(−t) = zh(t),

both graphs are symmetric across the x-axis as well. This means that we need only
focus our attention on the sector in the first quadrant from the horizontal axis to the ray
at polar angle θ = π/k measured counterclockwise from the horizontal. See Figure 8
for an illustration.

inside
middle

outside

Figure 8. By symmetry, we need only consider this one sector from θ = 0 to θ = π/k.

With this in mind, we start by showing that the two curves do indeed intersect at the
outside and inside points by noting that

ze(0) = Ak + 1 = zh(0)

and

ze(π/k) = eiπ/k(Ak − 1) = zh(π/k).

The moduli of these complex numbers above are Ak + 1 and Ak − 1, giving us
the radii of the circles for the outside and inside points of intersection as mentioned in
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the theorem. Since these are the maximum and minimum values, respectively, for the
moduli of the two curves, we know that both curves are in fact tangent to the circle of
radius Ak + 1 (on the outside) or Ak − 1 (on the inside) at those points of intersection
and hence are tangent to each other.

We now turn our attention to the middle points of intersection, as seen in Figure
8. Here, things are a little bit more difficult because the epitrochoid and hypotrochoid
actually “intersect” at that middle point at different values of the parameter t. To be
precise, we set ϕ = π/2k − π/k2 and we will show that

ze(ϕ+ π/k) = zh(ϕ− π/k) (7)

and that their moduli is cot(π/k). We can then appeal to symmetry to cover the other
2k − 1 middle points. (We should note that we only arrived at equation (7) after a
considerable amount of guess-and-check.)

For the left-hand side of equation (7), we use the expression for ze in equation (5),
replacing Ak with csc(π/k) and replacing t with ϕ+ π/k, to get

ze(ϕ+ π/k) = eiϕeiπ/k
(
csc (π/k) + eiπ/2e−iπ/keiπ

)
= eiϕ

(
eiπ/k csc (π/k) + eiπ/2eiπ

)
= eiϕ

(
cos(π/k) + i sin(π/k)

sin (π/k)
− i

)
= eiϕ cot(π/k).

Likewise, for the right-hand side of equation (7), we use the expression for zh in equa-
tion (6) but this time replacing t with ϕ− π/k, to get

zh(ϕ− π/k) = eiϕe−iπ/k
(
csc (π/k) + e−iπ/2eiπ/keiπ

)
= eiϕ

(
e−iπ/k csc (π/k) + e−iπ/2eiπ

)
= eiϕ

(
cos(π/k)− i sin(π/k)

sin (π/k)
+ i

)
= eiϕ cot(π/k).

This verifies equation (7), as desired. Note that we have also verified that the modulus
in each case is cot(π/k), giving us the desired radius for the circle containing these
middle points of intersection.

It remains to show that the two curves are tangent at that point of equality in equa-
tion (7). For this, we recall that the slope of the tangent line to a parametric curve
(x(t), y(t)) is given by (dy/dt)/(dx/dt). Once more we rely on complex variables
to simplify the problem, thanks to the nice property that if z(t) = x(t) + iy(t) then
dx/dt = Re z′(t) and dy/dt = Im z′(t), for the real and imaginary parts respectively.
Thus, referring back to equation (7), if we can also show that

z′e(ϕ+ π/k) = z′h(ϕ− π/k), (8)

this would imply the real and the imaginary parts of equation (8) are the same, and so
the slopes of the tangent lines would be the same at that point of intersection.

For the left-hand side of equation (8), we write ze(t) = Ake
it + ei(1+k)t, so that

z′e(t) = iAke
it + i(1 + k)ei(1+k)t
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= ieit
(
Ak + (1 + k)eikt

)
. (9)

Now, for t = ϕ+ π/k as seen on the left of equation (8), and with ϕ = π/2k − π/k2

as before, we note that

kt = (π/2− π/k) + π

and so

eikt = eiπ/2e−iπ/keiπ = −ie−iπ/k.

This means that equation (9) becomes

z′e(ϕ+ π/k) = ieiϕeiπ/k
(
Ak − i(1 + k)e−iπ/k

)
= ieiϕ

(
Ake

iπ/k − i(1 + k)
)
. (10)

Keeping that aside for now, we next turn to the right-hand side of equation (8). We
write zh(t) = Ake

it + ei(1−k)t, which means that

z′h(t) = iAke
it + i(1− k)ei(1−k)t

= ieit
(
Ak + (1− k)e−ikt

)
. (11)

Now, for t = ϕ − π/k as seen on the right of equation (8), and with ϕ = π/2k −
π/k2 as before, we note that this time,

kt = (π/2− π/k)− π

and so

e−ikt = e−iπ/2eiπ/keiπ = ieiπ/k.

This means that equation (11) becomes

z′h(ϕ− π/k) = ieiϕe−iπ/k
(
Ak + i(1− k)eiπ/k

)
= ieiϕ

(
Ake

−iπ/k + i(1− k)
)
. (12)

We now compare equations (10) and (12) to show that they are indeed equal to each
other. We start with the expression inside the parentheses in (10), which is(

Ake
iπ/k − i(1 + k)

)
=

cos(π/k) + i sin(π/k)

sin(π/k)
− i(1 + k) = cot(π/k)− ik.

(13)
Likewise, the expression inside the parentheses in equation (12) is(
Ake

−iπ/k + i(1− k)
)
=

cos(π/k)− i sin(π/k)

sin(π/k)
+ i(1− k) = cot(π/k)− ik.

(14)
Since these are the same, then equations (10) and (12) are equal to each other, which
establishes the equality in (8), thus showing that the two curves are indeed tangent, as
desired.
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A surprising slope
The highlight in the proof of Theorem 1 was showing that the epitrochoid and hypotro-
choid are indeed tangent at the middle point of intersection as seen in Figure 7. This
slope exhibits a rather unusual behavior as we increase the value of k, as shown in Fig-
ure 9. Despite the large value of k for the graphs on the right of Figure 9, the teardrop

Figure 9. Tangent line at first middle point of intersection for k = 7 and k = 2000.

shapes for the (solid) epitrochoid and the (dashed) hypotrochoid remain slightly askew,
which means the tangent line at that middle point of intersection is not horizontal, nor
will it approach horizontal even as k continues to increase. In fact, the limiting value
for the slope of this tangent line is rather surprising.

Theorem 2 (Slope Theorem). For the epitrochoid and hypotrochoid in Theorem 1
with perfect nesting at Ak = csc(π/k), the slope of the tangent line at the first middle
point of intersection above the x-axis approaches 1/π as k → ∞.

Proof. Recall from our discussion in the proof of Theorem 1 that the slope of the
tangent line is equal to (dy/dt)/(dx/dt) which is equal to Im z′(t)/Re z′(t). We
look now to equation (10) which gives us the derivative z′ of the epitrochoid (and the
hypotrochoid as well) at the point of intersection as

z′ = ieiϕ
(
Ake

iπ/k − i(1 + k)
)
,

where ϕ = π/2k − π/k2. Thanks to equation (13) this becomes

z′ = ieiϕ (cot(π/k)− ik) = i (cosϕ+ i sinϕ) (cot(π/k)− ik) ,

and if we multiply this out and simplify, we obtain

z′ = (k cosϕ− cot(π/k) sinϕ) + i (k sinϕ+ cot(π/k) cosϕ) .

Since the slope is m = Im z′/Re z′, we get

m =
k sinϕ+ cot(π/k) cosϕ

k cosϕ− cot(π/k) sinϕ
.

We multiply top and bottom by sin(π/k) to obtain

m =
k sin(π/k) sinϕ+ cos(π/k) cosϕ

k sin(π/k) cosϕ− cos(π/k) sinϕ
.
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We can now take the limit as k → ∞. Recall that ϕ = π/2k − π/k2, so as k → ∞
then ϕ → 0. A simple application of L’Hôpital’s rule tells us that k sin(π/k) ap-
proaches π as k → ∞, and so

m → π sin 0 + cos 0 cos 0

π cos 0− cos 0 sin 0
=

1

π
,

as desired.

A few more limiting values
As we saw in Theorem 2, our epitrochoid and hypotrochoid have interesting geome-
tries in the limit as k goes to infinity. We encourage the reader to try their hand at the
following problems (as suggested by our helpful anonymous referee).

Figure 10. Two triangles related to the tangent line.

In Figure 10, the black line is the same tangent line as referenced in Theorem 2.

1. Show that the area of the black triangle on the left of Figure 10 approaches π/8
as k → ∞.

2. Likewise, show that the area of the black triangle on the right approaches 1/4.

Figure 11. Two areas related to the hypotrochoid.

In Figure 11, we have shaded in two regions related to the hypotrochoid.

1. Show that the area of the black paisley shape on the left of Figure 11 approaches
π/2 as k → ∞.

2. We do not have a simple expression for the area of the teardrop shape on the
right of Figure 11. We encourage the reader to give it a try.
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Conclusion
As we have seen, the epitrochoid and hypotrochoid reveal some surprising secrets
when written in complex variables. We can only wonder what other parametric curves
might benefit from a similar treatment.

Summary. Two classic plane curves, the epitrochoid and hypotrochoid, can be placed together
in an optimal nested form. We find the appropriate equations by way of complex variables, and
we also get a surprising answer for the slope of a particular tangent line.
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