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Shown here in Figure 1 are two copies of the graph of r = 2 + cos 11θ/6, which
is known as a cyclic-harmonic curve.

Figure 1: Two copies of a typical cyclic-harmonic curve.

These pictures have 11-fold rotational symmetry and five concentric rings, two
of which we have highlighted on the right in black and gray. We will show that the
total black area in Figure 1 is 24− 45

√
3/4 and the total gray area is 24− 51

√
3/4.

If we now consider the generic r = a + cos pθ/q with a > 1 and with p, q ≥
2 relatively prime integers, then the graph will change quite a bit; our 11-fold
rotational symmetry will become p-fold symmetry, and instead of five rings our
generic curve will have q − 1 rings. None the less, we can still find expressions for
the two highlighted areas (black for the outer ring, and gray for the inner one).
While these new expressions will not be as simple as in our earlier example, we
discover to our surprise that these areas are independent of p. Next, we show (also
to our surprise) that the difference of these total areas is independent of p and a,
and achieves a maximum value of 4 when q = 4. Finally, we calculate the ratio of
these two areas and we show that as q →∞ the ratio goes to (a+ 1)/(a− 1).
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1. Historical Background

As mentioned above, these curves r = a+cos pθ/q are called cyclic-harmonic curves,
and they were studied rather extensively by Robert E. Moritz in the early 1900’s.
Moritz created a simple mechanism [1, Figure 6] to draw these and other curves for
different values of p and q, and he also wrote several articles [2, 3] discussing various
properties of these curves. His work was continued by the Jesuit astronomer and
physics professor William Rigge who spent ten years [4] building a more intricate
mechanical device which is shown in Figure 2.

Figure 2: Rigge’s mechanical device.

This photograph is taken from a supplement to Scientific American [5] from
the year 1918. The machine is about two feet wide and just over a foot tall, and
would have been a marvel in its time. Rigge used it to produce intricate polar and
rectangular curves [6, 7, 8] and even stereoscopic curves [9] which still dazzle the
eye today. Some of his (two-dimensional) curves are shown here in Figure 3.

We can see distant echoes of Rigge’s device in the popular Spirograph toy which
can draw some simple roulettes. We note with pleasure that Rigge’s mechanical
device has survived to the modern day. It is located in the aptly-named Rigge
Science Building, home to the physics department at Creighton University where
Rigge spent many decades of his life.

For whatever reason, neither Moritz nor Rigge studied the areas of these cyclic-
harmonic curves, and so we are delighted to resurrect these long-dormant equations
and to share our new discoveries about these old curves.
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Figure 3: Mechanically-drawn curves from 1920.

2. Our Main Result

Theorem 1. For r = a + cos pθ/q with a > 1 and with p, q ≥ 2 relatively prime,
the total area of the outer ring of the graph is

Ablack =
q

4

(
16a sin

π

q
− (8a− 2) sin

2π

q
− sin

4π

q

)
(1)

and the total area of the inner ring is

Agray =
q

4

(
16a sin

π

q
− (8a+ 2) sin

2π

q
+ sin

4π

q

)
. (2)

We note that when q = 6, then equations (1) and (2) give us

Ablack = 24− 45
√

3/4

Agray = 24− 51
√

3/4,

the areas of the two regions from Figure 1 as mentioned in the introduction to this
article.

Before venturing into the proof of Theorem 1, let us first discuss some of the
conclusions we can draw from it. First, we note that the difference of equations (1)
and (2) is

Ablack −Agray =
q

4

(
4 sin

2π

q
− 2 sin

4π

q

)
.
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This is indeed independent of both p and a, and it simplifies nicely to

Ablack −Agray = q sin
2π

q

(
1− cos

2π

q

)
. (3)

It is a straightforward optimization problem to show that the expression in (3)
achieves a maximum for integer q ≥ 2 at q = 4, with the maximum such value being
4. To illustrate this surprising result, Figure 4 shows three graphs of r = a+cos pθ/4
with differing values for a and p. In every case, the total black area is exactly four
more than the total gray area.

Figure 4: For q = 4, the area of the outer ring is always four more than the area of
the inner ring.

As for the ratio of equations (1) and (2), we see that this becomes

Ablack

Agray
=

16a sin
π

q
− (8a− 2) sin

2π

q
− sin

4π

q

16a sin
π

q
− (8a+ 2) sin

2π

q
+ sin

4π

q

.

To find the limit of this ratio as q → ∞, we can make it easier to calculate if we
replace q with 1/x and we replace q →∞ with x→ 0. This gives us

lim
q→∞

Ablack

Agray
= lim
x→0

16a sinπx− (8a− 2) sin 2πx− sin 4πx

16a sinπx− (8a+ 2) sin 2πx+ sin 4πx
,

and while it is tempting to apply L’Hôpital’s Rule, it is actually easier to simply
expand each term using Taylor series around x = 0. This gives us

lim
q→∞

Ablack

Agray
= lim
x→0

8π3(a+ 1)x3 − 2π5(a+ 4)x5 +O(x7)

8π3(a− 1)x3 − 2π5(a− 4)x5 +O(x7)

and after dividing top and bottom by 8π3x3 this limit gives us (a + 1)/(a − 1), as
desired. See Figure 5.

We summarize the above discussions in the following corollary.
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Figure 5: As q → ∞, the area of the outer ring approaches (a + 1)/(a − 1) times
the area of the inner ring.

Corollary 1. For r = a + cos pθ/q as seen in Theorem 1, the difference between
the total area of the outer ring and the total area of the inner ring depends only on
q and is equal to

Ablack −Agray = q sin
2π

q

(
1− cos

2π

q

)
. (4)

This difference is maximal (and equal to 4) when q = 4. As for the ratio, it is
dependent only on a and q, and as we take q going to infinity we have

lim
q→∞

Ablack

Agray
=
a+ 1

a− 1
. (5)

We are now ready for the proof of our main result.

Proof of Theorem 1. We note that the all of our figures seem to have both reflec-
tion symmetry (across the x-axis) and rotation symmetry (in Figure 1, rotating by
2π/11). To prove this for the general case with r(θ) = 2 + cos pθ/q, we note that
r(θ) = r(−θ) giving us the reflection symmetry. As for the rotation symmetry, we
will show that rotating the graph by 2π/p will give us the same picture (and thus
will give us p-fold rotational symmetry). To do this, we begin by noting that direct
substitution gives us

r (θ) = r

(
θ +

1q · 2π
p

)
= r

(
θ +

2q · 2π
p

)
= · · · = r

(
θ +

(p− 1)q · 2π
p

)
.

Since p and q are relatively prime, the set {1q, 2q, . . . , (p− 1)q} is a complete non-
zero residue set mod p, and so one of them (let’s call it jq) is equivalent to 1 mod
p, which means jq = kp+ 1 for some k. This means that

r(θ) = r

(
θ +

jq · 2π
p

)
= r

(
θ +

(kp+ 1) · 2π
p

)
= r

(
θ + k2π +

2π

p

)
,

and since the angle θ+k2π+ 2π/p is at the same position on the polar plane as the
angle θ + 2π/p, then when we rotate the graph by the angle 2π/p we get the same

5



graph, thus giving us our desired p-fold rotational symmetry. (This is a simplified
version of the symmetry argument given in [3, Theorem 2]).

We note that our rotational symmetry is not more than p-fold rotational sym-
metry, because our polar graph r(θ) = 2 + cos pθ/q achieves its maximum distance
from the origin only when θ = 0 and θ = 1q · 2π/p and θ = 2q · 2π/p and so on, up
to θ = (p− 1)q · 2π/p after which we start to repeat the angles. Hence, we have at
most, and thus exactly, p-fold rotational symmetry.

Next, we need to understand the self-intersections for this polar graph. This,
too, can be found in [3] but we provide here a simpler and self-contained argument.
Because p and q are relatively prime, our polar graph will need to wrap around the
origin q times before returning to the original starting configuration. Another way
of thinking about this is to recognize that the single graph r = 2 + cos(pθ/q) for θ
in [0, q2π] is the same as the q separate graphs

r0 = 2 + cos

(
pθ

q

)
, r1 = 2 + cos

(
p(θ + 1 · 2π)

q

)
,

all the way up to

rq−1 = 2 + cos

(
p(θ + (q − 1) · 2π)

q

)
,

with θ in [0, 2π] for all q of these graphs. See Figure 7.

Figure 6: Cartesian graphs of r0 = 2 + cos(11θ/6) and r1 = 2 + cos(11(θ + 2π)/6).

If we plot these graphs on a Cartesian plane, we can immediately recognize that
they are distinct and we can see where they intersect. Figure 6 shows the graphs for
just r0 and r1 with p/q = 11/6, and since r0 achieves its extremums at θ = 6nπ/11
and likewise r1 at θ = (6n+ 2)π/11, then the intersections for r0 and r1 will occur
midway between them.

Figure 7 shows all six graphs r0, r1, . . . , r5. We see that the intersections for all
these graphs can only occur at θ some integer multiple of π/11. Moving to the
general case, we conclude that the self-intersections for r = 2 + cos(pθ/q) will occur
when θ is one of the 2p integer multiples of π/p.
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Figure 7: Intersections occur when θ is an integer multiple of π/11.

We are now ready to calculate the area of the outside (black) regions. If we focus
our attention on the sector between θ = 0 and θ = 2π/p, we have self-intersections
at the three angles θ = 0, θ = π/p, and θ = 2π/p, as shown by the three rays in
Figure 8.

Figure 8: Finding the area of the outer (black) ring.

The total outside (black) area is made up of p copies of these black kite shapes
(two of them are shown in Figure 8 on the left). The outer curve, shown in red,
is given by r = 2 + cos(pθ/q) for θ in [0, π/p], and if we extend θ to the interval
[π/p, 2π/p] then we get the orange part of the curve in the picture on the left of
Figure 8. Thanks to the rotation and reflexion symmetry, this has the same shape
as the orange curve on the right. All this is to say that the area of that half-kite
black shape on the right of Figure 8 is∫ π/p

0

1

2
(a+ cos(pθ/q))

2
dθ −

∫ 2π/p

π/p

1

2
(a+ cos(pθ/q))

2
dθ.

We can easily calculate this, and then multiply it by 2p, to obtain the following
expression for the total black area, which matches Equation (1) in the statement of
Theorem 1:

Ablack =
q

4

(
16a sin

π

q
− (8a− 2) sin

2π

q
− sin

4π

q

)
.
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Surprisingly, this formula does not depend on p.

A similar argument applies for calculating the area of the inside (gray) regions.
This time we look at the sector between θ = qπ/p and θ = (q + 2)π/p, because our
graph is at its minimum when θ = qπ/p. In this sector, we have self-intersection at
the three angles θ = qπ/p, θ = (q + 1)π/p, and θ = (q + 2)π/p, as shown by the
three rays in Figure 9.

Figure 9: Finding the area of the inner (gray) ring.

The total inside (gray) area is made up of p copies of these gray kite shapes (three
of them are shown in Figure 9 on the left). The inner curve, shown in orange, is
given by r = 2 + cos(pθ/q) for θ in [qπ/p, (q + 1)π/p], and if we extend θ to the
interval [(q+ 1)π/p, (q+ 2)π/p] then we get the red part of the curve in the picture
on the left of Figure 9. Thanks to the rotation and reflexion symmetry, this has the
same shape as the red curve on the right. All this is to say that the area of that
half-kite gray shape on the right of Figure 9 is∫ (q+2)π/p

(q+1)π/p

1

2
(a+ cos(pθ/q))

2
dθ −

∫ (q+1)π/p

qπ/p

1

2
(a+ cos(pθ/q))

2
dθ.

We can easily calculate this, and multiply by 2p, to obtain the following expression
for the total gray area, which nicely matches Equation (2):

Agray =
q

4

(
16a sin

π

q
− (8a+ 2) sin

2π

q
+ sin

4π

q

)
.

Once again, this formula does not depend on p.

Having now established Equations (1) and (2) of Theorem 1, this concludes our
proof.
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Abstract

The cyclic-harmonic curves r = 2 + cos pθ/q are related to the familiar
roses r = cosnθ we all remember from calculus as our first introduction to
polar coordinate graphs. These cyclic-harmonic curves were studied rather
extensively by Robert Moritz and William Rigge in the 1910’s and 20’s and
have been mostly dormant since then. We bring them back to life and we
share some new discoveries related to their areas.
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